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ABSTRACT 
 

This research aims to develop a unified theoretical and simulation framework for analyzing and 
designing signals for stationary arterial networks. Existing traffic flow models used in design and 
analysis of signal control strategies are either too simple to be realistic or too detailed to be 
efficient. 

In this research we apply the link transmission model to formulate, analyze, and simulate traffic 
dynamics in a signalized arterial network. We first analytically derive approximate macroscopic 
fundamental diagrams for stationary traffic patterns with different network topologies, road 
conditions, driving behaviors, and signal settings. We then analyze congestion mitigation effects 
of different signal settings, including cycle lengths, green splits, and offsets. We further 
formulate and solve an optimization problem with the network flow-rate as performance measure 
to find optimal signal control parameters. We derived simple formulas for the optimal signal 
cycle length and offset under different traffic conditions to improve arterial network 
performance.   
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Chapter 1 
Literature Review 

1.1 Background 
Traffic signals have been widely deployed to resolve conflicts among various traffic 

streams and improve safety of drivers and pedestrians at busy urban intersections. But signalized 
intersections are also major network bottlenecks, inducing stop-and-go traffic patterns, travel 
delays, and vehicle emissions. Many efforts have been devoted to mitigating the congestion 
effects of isolated and coordinated intersections by optimally designing phase sequences, cycle 
lengths, green splits, offsets, and other parameters of traffic signals (Papageorgiou et al., 2005).  

 In existing signal analysis and design methods, performance measures include individual 
vehicles’ delays or the level of service at signalized intersections (Webster, 1958; Lo, 1999, 2001; 
Li, 2010), the bandwidth of a set of coordinated signalized intersections (Roess et al., 2010), the 
whole traffic system’s throughput (Li, 2010), a combination of delays and early arrival flows (He 
et al., 2010), or the mean of excess delays (Zhang et al., 2010). To evaluate these performances, 
underlying most of existing signal analysis and design methods are two types of traffic flow 
models: simple formulas for aggregate delay and bandwidth or traffic simulation models. The 
first type of methods are usually analytical, and the second type simulation-based. However, 
existing methods for traffic signal analysis and design are either too simplistic to be physically 
realistic or too complicated to be mathematically tractable, and there still lacks a systematic 
method (even) for mathematically analyzing and designing traffic signals for a large-scale 
arterial network, even for ‘‘a one-way arterial” (Newell, 1989). 

Since the introduction of the celebrated LWR model (Lighthill and Whitham, 1955; 
Richards, 1956), kinematic wave theory has been successfully applied to describe traffic 
dynamics on both freeways and arterial roads. It has been shown to be capable of capturing 
shock and rarefaction waves and the initiation, propagation, and dissipation of traffic queues, 
caused by various bottlenecks and interactions among vehicles. In particular, with the Cell 
Transmission Model (CTM) and other network kinematic wave theory (Daganzo, 1995; 
Lebacque, 1996), traffic dynamics in a road network can be systematically modeled. Compared 
with microscopic models, such network kinematic wave models are more suitable for studying 
traffic dynamics in large-scale arterial road networks. In addition, with the availability of various 
types of traffic data and the development of connected and automated vehicles, it is high time to 
develop effective and efficient methods for analyzing and designing signals for large-scale 
arterial networks. 

1.2 Existing signal design and analysis methods 
Traditionally performance measures used in the analysis and design of traffic signals 

include individual vehicles’ delays or the level of service at signalized intersections (Webster, 
1958; Lo, 1999, 2001; Li, 2010), the bandwidth of a set of coordinated signalized intersections 
(Roess et al., 2010), the whole traffic system’s throughput (Li, 2010), a combination of delays 
and early arrival flows (He et al., 2010), or the mean of excess delays (Zhang et al., 2010). To 
evaluate these performances, underlying most of existing signal analysis and design methods are 



two types of traffic flow models: simple formulas for aggregate delay and bandwidth or traffic 
simulation models. The first type of methods are usually analytical, and the second type 
simulation-based. 

1.2.1 Analytical methods 

For signal control on local arterials, it can be classified into two types according to the 
number of targeted intersections: for isolated intersections only and for coordinated intersections. 
In the literature, there have been a number of signal control strategies proposed for each category. 
In the following subsections, we provide a review of some prevailing strategies. 

For isolated intersections 
According to (Papageorgiou et al., 2003), fixed-time control strategies for a single 

intersection can be stage-based or phase-based. For stage-based strategies, the stage settings are 
fixed, and the proposed strategies are developed to find optimal splits and cycle lengths by 
minimizing the total delay or maximizing the total throughput at the intersection. To calculate 
vehicle’s average delay, the delay formulation proposed by Webster (Webster, 1958) has been 
widely used in the literature, which can be formulated as follows: 

 
𝑑𝑑 =
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where  

𝜋𝜋 =cycle length, 

𝑔𝑔 =effective green time, 

𝑣𝑣 =arrival flow-rate, 

𝑐𝑐 =capacity of the intersection approach, 

𝑠𝑠 =saturation flow-rate, 

𝑋𝑋 = 𝑣𝑣
𝑐𝑐

= 𝑣𝑣𝐶𝐶
𝑠𝑠𝑔𝑔

, the degree of saturation. 

The above delay calculation consists of three parts: the first part is the uniform delay; the 
second part is the random delay; and the third part is the empirical adjustment. In (Webster, 
1958), optimal cycle lengths were obtained by minimizing the total delay at the intersection 
under given arrival flow-rates. In (Miller, 1963b), to obtain optimal settings of splits and cycle 
lengths, various arrival patterns were taken into account in the calculation of random delay. 
Since it is possible that an approach may have right of way in more than one stage within a cycle, 
SIGSET was proposed in (Allsop, 1971a; Allsop, 1971b) to take into account such a case, and 
Webster’s delay formula was used in the delay estimation. By minimizing the total delay with 
the capacity, cycle lengths, and minimum green time constraints, optimal settings of cycle length 
and effective green time for each stage were obtained. Under similar constraints as those in 



SIGSET, another program called SIGCAP was proposed in (Allsop, 1972; Allsop, 1976) to 
maximize the practical capacity at signalized intersections. 

 Different from stage-based control strategies, phase-based control strategies are 
developed to further consider optimal stage settings. One example can be found in (Improta and 
Cantarella, 1984), in which the constraint of fixed staging was released. Instead, incompatibility 
of traffic streams was introduced as a constraint in the optimization problem. By either 
minimizing the total delay or maximizing the intersection capacity, optimal settings of splits, 
cycle lengths, and stage settings can be obtained. In (Improta and Cantarella, 1984), the 
optimization problem was formulated as a binary-mixed-integer-linear- programming (BMILP) 
problem, and solutions were obtained using a branch-and-bound method. 

Besides fixed-time control strategies, there also exist traffic-responsive control strategies 
that utilize the real-time loop detector data in the field. In (De la Breteque and Jezequel, 1979), 
examples such as the Vehicle Interval strategy, the Volume Density strategy, and Miller’s 
algorithm were provided. In the Vehicle Interval strategy, each stage has a set of pre-specified 
minimum and maximum green times. If a vehicle is detected to cross the intersection, a critical 
interval (CI) will be used to extend the green time to allow that vehicle to pass. A similar control 
logit was used in the Volume Density strategy. But it further takes into account queue lengths 
and vehicles’ waiting times during the red phases while deciding the switching time instants. In 
(Miller, 1963a), a computer program was used to determine whether to switch the signal 
immediately or to delay the switch for a user-defined time interval at every time step. Such a 
decision is made based on the evaluation of the time gain in postponing the switch. If the time 
gain is negative, the signal is switched immediately; otherwise, it remains unchanged for the next 
time step.  

For coordinated intersections 
If traffic signals in an arterial are close enough, the dissipation of vehicles is usually in 

platoons. Therefore, it is possible to synchronize the signals so as to allow vehicles travel along 
the arterial from the beginning to the end without stopping. In this case, bandwidth in one traffic 
direction is defined as the time difference between the first and the last vehicles that satisfy the 
above requirement. In the literature, there have been studies trying to maximize the bandwidths 
along the arterial. For example, with given cycle and speed ranges, MAXBAND was introduced 
in (Little, 1966) to obtain optimal offset settings so as to maximize the total bandwidths of a two-
way arterial. The optimization problem was formulated as a mixed-integer-linear-programing 
(MILP) problem, and a branch-and-bound method was used to solve it. Later in (Gartner et al., 
1991), MULTI-BAND was proposed to add new features such as determination of left-turn 
phases and different bandwidths among the links into the optimization problem. In (Robertson, 
1969), TRANSYT (TRAffic Network StudY Tool) was proposed to obtain multi-directional 
green waves so as to minimize the total delay.  Such a model consists of two parts: (i) with given 
network information such as road geometries, turning ratios at intersection, and demands, a 
platoon dispersion model is used to describe vehicle’s progression inside a link; (ii) a “hill-
climbing” method is used to solve the optimization problem. Performance Index (PI) is 
introduced to evaluate the improvements at each optimization step. The program will stop when 
a (local) minimum is found.  



Due to the fact that demands and turning movements at intersections are changing as time 
elapses, traffic-responsive coordinated strategies have also been proposed in the literature. 
SCOOT (Split, Cycle and Offset Optimization Technique), which is a traffic-responsive version 
of TRANSYT, was proposed in (Hunt et al., 1982; Hunt et al., 1981). While keeping similar 
optimization structure as in TRANSYT, SCOOT works in a real-time fashion: it utilizes real-
time measurements of flows and occupancies from vehicle loop detectors to predict delay and 
stops; the signal optimizer works in real time, and new signal settings are implemented directly 
on the street. Besides SCOOT, another algorithm called OPAC (Optimization Policies for 
Adaptive Control), which is a model-based traffic-responsive strategy, was proposed in (Gartner, 
1983). In OPAC, splits, offsets, and cycles are not explicitly considered. A rolling horizon 
approach is used for real-time applications: at time 𝑡𝑡, the optimization method calculates an 
optimal switching scheme for the time interval [𝑡𝑡 − ℎ, 𝑡𝑡 + 𝐻𝐻 − ℎ] (𝐻𝐻 > ℎ) based on the data in 
the time interval [𝑡𝑡 − ℎ, 𝑡𝑡] and applies it to the time interval [𝑡𝑡, 𝑡𝑡 + ℎ]; then the optimization time 
horizon moves to the next step, 𝑡𝑡 + ℎ. Note that since OPAC employs complete enumeration in 
the optimization, it is not real-time feasible for multiple intersections (Papageorgiou et al., 2003). 

1.2.2 Simulation-based methods 

In the second type of methods, various traffic flow models are used to simulate traffic 
dynamics, and optimal control problems are formulated to find best signal settings 
simultaneously subject to given demand patterns (Gazis and Potts, 1963; Gazis, 1964; D’ans and 
Gazis, 1976; Improta and Cantarella, 1984; Papageorgiou, 1995; Park et al., 1999; Chang and 
Lin, 2000; Chang and Sun, 2004). For example, the Cell Transmission Model (CTM) (Daganzo, 
1995; Lebacque, 1996) has been incorporated into numerous formulations of the traffic signal 
problem (Lo, 1999; Li, 2010). Such models can are more realistic in traffic dynamics, but are too 
detailed to be amenable for mathematical analysis. In addition, these formulations usually end up 
as mixed-integer linear programing (MILP) problems, which can be effectively solved only for 
small networks and become numerically formidable for large-scale arterial networks. 

1.3 Network traffic flow models 
Since the introduction of the celebrated LWR model (Lighthill and Whitham, 1955; 

Richards, 1956), kinematic wave theory has been successfully applied to describe traffic 
dynamics on both freeways and arterial roads. It has been shown to be capable of capturing 
shock and rarefaction waves and the initiation, propagation, and dissipation of traffic queues, 
caused by various bottlenecks and interactions among vehicles. In particular, with the Cell 
Transmission Model (CTM) and other network kinematic wave theory (Daganzo, 1995; 
Lebacque,1996), traffic dynamics in a road network can be systematically modeled.  

1.3.1 Cell transmission model 

In kinematic wave theories, traffic flow is considered as a continuous media. Three 
location-and-time dependent variables, speed 𝑣𝑣(𝑥𝑥, 𝑡𝑡), density 𝑘𝑘(𝑥𝑥, 𝑡𝑡), and flow-rate 𝑞𝑞(𝑥𝑥, 𝑡𝑡), are 
used to describe the traffic flow characteristics at point 𝑥𝑥 and time 𝑡𝑡. For a road section without 
any entrances and exits, flow conservation is hold, which can be written as 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑥𝑥

= 0      (2) 
   



In traffic flow, it is well known that there exists a fundamental relation between flow-rate (or 
speed) and density (Greenshields, 1935), i.e., 𝑞𝑞(𝑥𝑥, 𝑡𝑡) = 𝑄𝑄(𝑘𝑘(𝑥𝑥, 𝑡𝑡)) or 𝑣𝑣(𝑥𝑥, 𝑡𝑡) = 𝑉𝑉(𝑘𝑘(𝑥𝑥, 𝑡𝑡)). Such 
a relation is known as the traffic flow fundamental diagram and can be validated using the 
vehicle loop detector data from freeways. Generally speaking, 𝑄𝑄(𝑘𝑘) is a concave function and 
attains its capacity 𝜋𝜋  at 𝑘𝑘 = 𝑘𝑘𝑐𝑐 , where 𝑘𝑘𝑐𝑐  is the critical density. Introducing the fundamental 
diagram into Equation (2), the Lighthill-Whitham-Riahcrds (LWR) model (Lighthill and 
Whitham, 1955; Richards, 1956) is obtained. 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)
𝜕𝜕𝑡𝑡

+ 𝜕𝜕𝜕𝜕(𝜕𝜕(𝑥𝑥,𝑡𝑡))
𝜕𝜕𝑥𝑥

= 0      (3) 
Equation (3) is a hyperbolic conservation law and is difficult to solve analytically under 

general initial and boundary conditions. Therefore, in (Daganzo, 1994; Daganzo, 1995), the cell 
transmission model (CTM) was introduced to numerically solve Equation (3). According to the 
Godunov method (Godunov, 1959), a link is equally divided into N cells with a length of Δ𝑥𝑥, and 
the whole time interval is partitioned into J time steps with an interval of Δ𝑡𝑡. In Figure 1.1, cell 
representation inside a regular link is provided. Then the discrete version of Equation (3) can be 
written as 

𝜕𝜕𝑖𝑖
𝑗𝑗+1−𝜕𝜕𝑖𝑖

𝑗𝑗

Δ𝑡𝑡
− 𝑓𝑓𝑖𝑖−1

𝑗𝑗 −𝑓𝑓𝑖𝑖
𝑗𝑗

Δ𝑥𝑥
= 0       (4) 

 

 
 Figure 1.1 Cell representation inside a regular link  
   

where 𝑘𝑘𝑖𝑖
𝑗𝑗and 𝑘𝑘𝑖𝑖

𝑗𝑗+1 are the densities of cell i at time steps j  and j+1, respectively, and  𝑓𝑓𝑖𝑖−1
𝑗𝑗  and 

𝑓𝑓𝑖𝑖
𝑗𝑗 are the upstream and downstream boundary fluxes of cell i at time step j, respectively. Here, 

the choice of Δ𝑡𝑡
Δ𝑥𝑥

 should follow the CFL condition (Courant et al., 1928), which requires a vehicle 

cannot travel across one cell at one time step. That is, vfΔ𝑡𝑡
Δ𝑥𝑥

≤ 1, where vf is the free-flow speed of 
that link. Given densities and fluxes at time step j, the density at time step j+1 can be updated 
using the following equation: 

 
𝑘𝑘𝑖𝑖
𝑗𝑗+1 = 𝑘𝑘𝑖𝑖

𝑗𝑗 +
Δ𝑡𝑡
Δ𝑥𝑥

(𝑓𝑓𝑖𝑖−1
𝑗𝑗 − 𝑓𝑓𝑖𝑖

𝑗𝑗) 2) 
To obtain the fluxes crossing the cell boundaries, the definitions of demand 𝐷𝐷 and supply 

𝑆𝑆 (Daganzo, 1995; Lebacque, 1996) are introduced and can be calculated as 
 𝐷𝐷 = 𝑄𝑄(min{𝑘𝑘,𝑘𝑘𝑐𝑐}) 3) 
 𝑆𝑆 = 𝑄𝑄(max {𝑘𝑘,𝑘𝑘𝑐𝑐}) 

4) 
Therefore, the flux through a cell boundary can be calculated by taking the minimum of the 
upstream cell’s demand and the downstream cell’s supply, which is 

 𝑓𝑓𝑖𝑖−1
𝑗𝑗 = min{𝐷𝐷𝑖𝑖−1

𝑗𝑗 ,𝑆𝑆𝑖𝑖
𝑗𝑗} 5) 

where 𝐷𝐷𝑖𝑖−1
𝑗𝑗 is the demand of cell i-1, and 𝑆𝑆𝑖𝑖

𝑗𝑗 is the supply of cell i at time step j. For freeway 
networks, network junction models such as those in (Daganzo, 1995; Lebacque, 1996; Jin et al., 



2009; Jin, 2010, Jin, 2012a; Jin, 2014a) are needed to model the traffic dynamics at various types 
of junctions. For urban networks, besides the network junction models, signal control should be 
considered in order to manage the conflicting traffic movements at the intersections. 

1.3.2 Link transmission model 

Traditionally, at a point (𝑎𝑎, 𝑥𝑥𝑎𝑎) inside link 𝑎𝑎, the density 𝑘𝑘𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡), the speed 𝑣𝑣𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡), 
the flow-rate 𝑞𝑞𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡) are used as variables to describe the evolution of traffic flow. The flow 
conservation, 𝜕𝜕𝜕𝜕𝑎𝑎

𝜕𝜕𝑡𝑡
+ 𝜕𝜕𝜕𝜕𝑎𝑎

𝜕𝜕𝑥𝑥
= 0, together with the traffic flow fundamental diagram, 𝑞𝑞𝑎𝑎 = 𝑄𝑄𝑎𝑎(𝑘𝑘𝑎𝑎), 

forms the LWR model. However, we also can use another type of state variable, which is the 
cumulative flow, 𝐴𝐴𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡), and is known as the Moskovitz function (Moskowitz, 1965). Since 
we have 𝑘𝑘𝑎𝑎 = −𝜕𝜕𝐴𝐴𝑎𝑎

𝜕𝜕𝑥𝑥
, and 𝑞𝑞𝑎𝑎 = 𝜕𝜕𝐴𝐴𝑎𝑎

𝜕𝜕𝑡𝑡
, the flow conservation is automatically satisfied if we have 

𝜕𝜕2𝐴𝐴𝑎𝑎
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡

= 𝜕𝜕2𝐴𝐴𝑎𝑎
𝜕𝜕𝑡𝑡𝜕𝜕𝑥𝑥

. Therefore, to solve the LWR model in Equation 3 is equivalent to solve the 
following Hamilton-Jacobi equation 

 𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝑡𝑡

− 𝑄𝑄𝑎𝑎(−
𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝑥𝑥

) = 0 (6) 

with the Hamiltonian 𝐻𝐻 �𝜕𝜕𝐴𝐴𝑎𝑎
𝜕𝜕𝑥𝑥
� = −𝑄𝑄𝑎𝑎(−𝜕𝜕𝐴𝐴𝑎𝑎

𝜕𝜕𝑥𝑥
). Besides CTM, another new solution to the LWR 

model, which is called the Link Transmission Model (LTM), was proposed in recent studies. The 
discrete version can be found in (Yperman, 2007), while its continuous version can be referred to 
(Jin, 2014b).   

Here, the triangular traffic flow fundamental diagram (Haberman, 1977), 𝑞𝑞 = 𝑄𝑄(𝑘𝑘) =
min {𝑣𝑣𝑓𝑓𝑘𝑘,𝑤𝑤(𝑘𝑘𝑗𝑗 − 𝑘𝑘)}, is used. The initial cumulative flow at 𝑥𝑥𝑎𝑎 ∈ [0, 𝐿𝐿𝑎𝑎] is denoted as 𝑁𝑁𝑎𝑎(𝑥𝑥𝑎𝑎). 
The cumulative in-flow and the in-flux at the upstream boundary are denoted as 𝐹𝐹𝑎𝑎(𝑡𝑡) and 𝑓𝑓𝑎𝑎(𝑡𝑡), 
respectively. The cumulative out-flow and the out-flux at the downstream boundary are denoted 
as 𝐺𝐺𝑎𝑎(𝑡𝑡) and 𝑔𝑔𝑎𝑎(𝑡𝑡), respectively. To describe the congestion pattern inside a link, two variables, 
the link queue size 𝛼𝛼𝑎𝑎(𝑡𝑡) and the link vacancy size 𝛽𝛽𝑎𝑎(𝑡𝑡) are used and can be calculated as 
follows: 

  

𝛼𝛼𝑎𝑎(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧𝑁𝑁𝑎𝑎�𝐿𝐿𝑎𝑎 − 𝑣𝑣𝑎𝑎,𝑓𝑓𝑡𝑡� − 𝐺𝐺𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤

𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

𝐹𝐹𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

� − 𝐺𝐺𝑎𝑎(𝑡𝑡) 𝑡𝑡 >
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

 

𝛽𝛽𝑎𝑎(𝑡𝑡) =

⎩
⎨

⎧ 𝑁𝑁𝑎𝑎(𝑤𝑤𝑎𝑎𝑡𝑡) + 𝑘𝑘𝑎𝑎,𝑗𝑗𝑤𝑤𝑎𝑎𝑡𝑡 − 𝐹𝐹𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

𝐺𝐺𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎
� + 𝑘𝑘𝑎𝑎,𝑗𝑗𝐿𝐿𝑎𝑎 − 𝐹𝐹𝑎𝑎(𝑡𝑡) 𝑡𝑡 >

𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

 

(7) 

Initially, we have 𝛼𝛼(0) = 0 and 𝛽𝛽(0) = 0.  In the LTM, either cumulative flows or link queue 
and vacancy sizes can be used as stable variables to describe the evolution of traffic dynamics. If 
the cumulative flow, i.e., 𝐹𝐹𝑎𝑎(𝑡𝑡) and 𝐺𝐺𝑎𝑎(𝑡𝑡), are used, we have the following evolution equations:  

 𝑑𝑑
𝑑𝑑𝑡𝑡
𝐹𝐹𝑎𝑎(𝑡𝑡) = 𝑓𝑓𝑎𝑎(𝑡𝑡) (8) 



𝑑𝑑
𝑑𝑑𝑡𝑡
𝐺𝐺𝑎𝑎(𝑡𝑡) = 𝑔𝑔𝑎𝑎(𝑡𝑡) 

If the link queue and vacancy sizes, i.e., 𝛼𝛼𝑎𝑎(𝑡𝑡) and 𝛽𝛽𝑎𝑎(𝑡𝑡), are used, we have the following 
evolution equations:  

 
𝑑𝑑𝛼𝛼𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

=

⎩
⎪
⎨

⎪
⎧𝑘𝑘𝑎𝑎�𝐿𝐿𝑎𝑎 − 𝑣𝑣𝑎𝑎,𝑓𝑓𝑡𝑡, 0�𝑣𝑣𝑎𝑎,𝑓𝑓 − 𝑔𝑔𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤

𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

𝑓𝑓𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

� − 𝑔𝑔𝑎𝑎(𝑡𝑡) 𝑡𝑡 >
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

 

𝑑𝑑𝛽𝛽𝑎𝑎(𝑡𝑡)
𝑑𝑑𝑡𝑡

=

⎩
⎨

⎧−𝑘𝑘𝑎𝑎(𝑤𝑤𝑎𝑎𝑡𝑡, 0)𝑤𝑤𝑎𝑎 + 𝑘𝑘𝑎𝑎,𝑗𝑗𝑤𝑤𝑎𝑎 − 𝑓𝑓𝑎𝑎(𝑡𝑡) 𝑡𝑡 ≤
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

𝑔𝑔𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎
� − 𝑓𝑓𝑎𝑎(𝑡𝑡) 𝑡𝑡 >

𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

 

(9) 

To update the evolution functions in Equations 11 and 12, the in-fluxes and out-fluxes are 
needed to be calculated/updated first. Here we define an indicator function 𝐻𝐻(𝑦𝑦) for 𝑦𝑦 ≥ 0, 
which is formulated as follows: 

 𝐻𝐻(𝑦𝑦) = lim
Δ𝑡𝑡→0+

𝑦𝑦
Δ𝑡𝑡

= � 0 𝑦𝑦 = 0
+∞ 𝑦𝑦 > 0 (10) 

Then the link demand 𝑑𝑑𝑎𝑎(𝑡𝑡) and link supply 𝑠𝑠𝑎𝑎(𝑡𝑡) are defined as  

 

𝑑𝑑𝑎𝑎(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧min {𝑘𝑘𝑎𝑎�𝐿𝐿𝑎𝑎 − 𝑣𝑣𝑎𝑎,𝑓𝑓𝑡𝑡, 0�𝑣𝑣𝑎𝑎,𝑓𝑓 + 𝐻𝐻�𝛼𝛼𝑎𝑎(𝑡𝑡)�,𝜋𝜋𝑎𝑎} 𝑡𝑡 ≤

𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

min{𝑓𝑓𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

� + 𝐻𝐻�𝛼𝛼𝑎𝑎(𝑡𝑡)�,𝜋𝜋𝑎𝑎} 𝑡𝑡 >
𝐿𝐿𝑎𝑎
𝑣𝑣𝑎𝑎,𝑓𝑓

 

𝑠𝑠𝑎𝑎(𝑡𝑡) =

⎩
⎨

⎧min {𝑘𝑘𝑎𝑎,𝑗𝑗𝑤𝑤𝑎𝑎 − 𝑘𝑘𝑎𝑎(𝑤𝑤𝑎𝑎𝑡𝑡, 0)𝑤𝑤𝑎𝑎 + 𝐻𝐻�𝛽𝛽𝑎𝑎(𝑡𝑡)�,𝜋𝜋𝑎𝑎} 𝑡𝑡 ≤
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

min{𝑔𝑔𝑎𝑎 �𝑡𝑡 −
𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎
� + 𝐻𝐻(𝛽𝛽𝑎𝑎(𝑡𝑡)),𝜋𝜋𝑎𝑎} 𝑡𝑡 >

𝐿𝐿𝑎𝑎
𝑤𝑤𝑎𝑎

 

(11) 

At a junction 𝑗𝑗, macroscopic junction models are used to determine the in-fluxes and out-fluxes 
from the upstream link demands, downstream link supplies, and turning proportions, which in 
general can be written as follows: 

 �𝒈𝒈𝑗𝑗(𝑡𝑡),𝒇𝒇𝑗𝑗(𝑡𝑡)� = 𝑭𝑭(𝒅𝒅𝑗𝑗(𝑡𝑡), 𝒔𝒔𝑗𝑗(𝑡𝑡), 𝝃𝝃𝑗𝑗(𝑡𝑡))) (12) 
Here, 𝒈𝒈𝑗𝑗(𝑡𝑡)  is the set of in-fluxes, while 𝒇𝒇𝑗𝑗(𝑡𝑡)  is the set of out-fluxes. 𝒅𝒅𝑗𝑗(𝑡𝑡)  is the set of 
upstream link demands, while 𝒔𝒔𝑗𝑗(𝑡𝑡) is the set of downstream link supplies. 𝝃𝝃𝑗𝑗(𝑡𝑡) is a matrix that 
contains turning proportions from the upstream links to the downstream ones. As shown in (Jin, 
2014b), non-invariant junction models cannot be used in the LTM, which may yield no solution 
to the traffic statics problem under certain traffic conditions. A set of invariant junction models 
can be found in (Jin et al., 2009; Jin, 2010, Jin, 2012a; Jin, 2014a). 

With Equations 14 and 15, the in-fluxes and out-fluxes can be calculated and then be 
introduced into Equations 11 or 12 to update the state variables. But note that, as shown in 
Equation 14, link demands and supplies depend on the historical data, and therefore, Equations 



11 and 12 are systems of ordinary differential equations (ODEs) with delays. Once the 
cumulative in-flows 𝐹𝐹𝑎𝑎(𝑡𝑡) and the cumulative out-flows 𝐺𝐺𝑎𝑎(𝑡𝑡) are obtained, traffic states inside 
link 𝑎𝑎 can be obtained. More details can be referred to (Jin, 2014b). 

1.4 Stationary states and macroscopic fundamental diagram 
1.4.1 Stationary states 

 

Figure 1.2 Typical traffic conditions in downtown Los Angeles during Monday’s afternoon peak 
periods (Source: Google Maps Traffic) 

Figure 1.2 demonstrates typical traffic conditions in downtown Los Angeles during 
Monday’s afternoon peak periods. Comparing the left figures, (a) and (d), and the right figures, 
(b) and (c), we can see that traffic conditions are relatively stationary on the arterial network 
from 5:15 to 5:45; that is, congested links, queue lengths, and bottleneck locations remain almost 
the same during the period. Such stationary patterns have also been observed in freeway 
networks (Jin, 2015b), and we believe that stationary traffic patterns in arterial networks are also 
caused by that ‘‘the traffic demand and origin-destination desires are relatively constant over the 
time period” (Wattleworth, 1967). The existence of such stationary traffic patterns is also 
consistent with our daily driving experience: we experience almost the same level of congestion 
on the same link at the same time every day. 

In many studies on analysis, control, management, planning, and design of road networks 
during peak periods, traffic patterns have been assumed to be stationary (Merchant and 



Nemhauser, 1978b; Yang and Yagar, 1995; Yang and Lam, 1996): in (Beckmann et al., 1956), 
the static traffic assignment problem was formulated to determine the aggregate route choice 
behaviors of vehicles; in (Godfrey, 1969), it was postulated that a network-wide macroscopic 
fundamental diagram (MFD) exists in such stationary, or steady, states, and this has been 
verified by observations (Geroliminis and Daganzo, 2008); in (Wattleworth, 1967), the local and 
global control problem of a freeway system was solved with linear programming methods; in 
(Potts and Oliver, 1972), network flow conservation problems are solved; and in (Payne and 
Thompson, 1974), the integrated traffic assignment and ramp metering problem was solved for 
stationary traffic patterns.  

1.4.2 Macroscopic fundamental diagrams 

In stationary urban road networks, it was postulated that there exists a relation between 
network-average flow and density in (Godfrey, 1969). Such a relation is called the macroscopic 
fundamental diagram (MFD) and has been shown to be unique in homogeneous networks, but 
not in non-homogeneous ones with simulations and observations (Ardekani and Herman,  1987; 
Mahmassani et al., 1987; Olszewski et al., 1995; Geroliminis and Daganzo, 2008; Buisson and 
Ladier, 2009; Cassidy et al., 2011; Geroliminis and Boyaci, 2012). In (Daganzo, 2007; 
Geroliminis et al., 2013), regional demand control strategies were developed based on MFD. 

As a system-wide characteristic, MFD emerges from network traffic flow patterns, which 
are determined by network topology, signal and other control measures, and drivers' choices in 
destinations, modes, departure times, routes, and speeds. Some efforts have been devoted to 
deriving MFD in simple signalized networks from various traffic flow models. In (Gartner and 
Wagner, 2004), with cellular automaton simulations for traffic on a ring road, which has multiple 
identical signals, the relationship between flow-rate, density, and offset was obtained in 
relatively stationary states after a long time (2000 seconds), and it was found that offsets can 
have drastic impacts on the overall throughputs and, therefore, travel times on an arterial road. In 
(Daganzo and Geroliminis, 2008), a variational method was proposed to compute the 
approximate MFD for the relationship between long-time average flow-rates and densities in a 
ring road with multiple signals, but the study did not provide definitions of stationary states, or 
explicit formulas for the MFD, or optimal signal settings. In (Daganzo et al., 2011), the MFD in 
a double-ring network with turning movements was studied with heuristic double-bin 
approximations and cellular automaton simulations. In (Jin et al., 2013), steady or stationary 
states in a signalized double-ring network were defined as asymptotically periodic traffic states 
within the framework of a network kinematic wave theory, and impacts of signal settings and 
turning movements on MFD in stationary states were simulated with the Cell Transmission 
Model (CTM) (Daganzo, 1995). In (Muralidharan et al., 2015), the existence and stability of 
periodic solutions in a signalized road network with fixed-time control were studied with the 
point queue model, but queue spillbacks were not captured in this study. In (Gan et al., 2015), 
stationary states in a double-ring network with turning movements, which is equivalent to a 
homogeneous, symmetric road network with turning movements, were defined and analyzed 
with a Poincare map: it was shown that stationary states exist, but may be unstable, and there 
exist multiple average flow-rates at one density. The study was enabled by the link queue model, 
which is an ordinary differential equation approximation of the kinematic wave model, uses the 
link fundamental diagram, and captures the queue spillback phenomenon, but allows for 
instantaneous vehicle and wave propagation. 



1.5 Summary 
In this chapter, we provided the literature review for arterial signal design and analysis 

methods as well as network traffic flow theory. First, we reviewed existing signal design and 
analysis methods, including both analytical and simulation-based methods. Second, we reviewed 
network kinematic wave theory, including the cell transmission model (CTM), and the link 
transmission model (LTM). Third, we reviewed studies related to stationary states and 
macroscopic fundamental diagram.  

In the following we discuss limitations and improvements of the existing models and 
methods.  (i) Existing methods for traffic signal analysis and design are either too simplistic to be 
physically realistic or too complicated to be mathematically tractable, and there still lacks a 
systematic method (even) for mathematically analyzing and designing traffic signals for a large-
scale arterial network, even for ‘‘a one-way arterial”; (ii) Traffic dynamics in a signalized 
network are still too complicated to be mathematically tractable; (iii) there exists no systematic 
studies on stationary states in signalized networks, and there exists no explicit closed-form 
formula of MFD; in particular, signal settings have not been included as parameters in MFD, 
even for simple networks.  

In this project, based on network kinematic wave theory, we will first rigorously define 
and discuss properties of stationary states in signalized networks, which are more complicated 
than those in freeway networks without signals. Then the MFD is formally defined as the 
relationship between network flow-rate and density, and we will derive closed-form formulas for 
macroscopic fundamental diagrams with signal settings as explicit parameters for different 
networks. Further we will provide analytical formulas for optimal signal settings for different 
densities in different road networks. Finally we will develop numerical methods for finding 
stationary states, MFD, and optimal signal settings in large-scale arterial road networks. 

This chapter provides researchers and engineers a systematic view on the state-of-the-art 
traffic signal design and analysis as well as dynamic and stationary network traffic flow models, 
and can help them to appreciate the need and potential for developing more efficient and 
effective control and management schemes in urban networks in the future.   

  



 

Chapter 2 
Problem formulation 

2.1 Network and signal settings 
We consider a road network, as illustrated in Figure 2.1(a), in which turning movements 

can be ignored. Thus we effectively consider an infinite street as illustrated in Figure 2.2(b). We 
label the roads consecutively by integer numbers: ⋯ ,−2,−1, 0, 1, 2,⋯. For road 𝑗𝑗, its length is 
𝐿𝐿𝑗𝑗. Here we assume that the roads are periodic with a period of 𝑚𝑚, which is a natural number. 
That is, we assume that 𝐿𝐿𝑚𝑚+𝑗𝑗 = 𝐿𝐿𝑗𝑗 . We denote the location on the street by 𝑥𝑥, which increases in 
the traffic condition; for simplicity, we assume that road 1 starts at 𝑥𝑥 = 0 and ends at 𝑥𝑥 = 𝐿𝐿1.   

   

(a) (b) (c) 

Figure 2.1 Illustration of (a) A road network; (b) An infinite street with periodic roads; (c) A 
signalized ring road 

 For a fixed, periodic traffic signal at the downstream boundary of road 𝑗𝑗, we denote its 
cycle length by 𝑇𝑇𝑗𝑗, green ratio by 𝜋𝜋𝑗𝑗, and (cumulative) offset by 𝛿𝛿𝑗𝑗 = Δ𝑗𝑗 − Δ𝑗𝑗−1, where Δ𝑗𝑗 is the 
cumulative offset at signal 𝑗𝑗. Without loss of generality, Δ0 = 0.i.e., signal 0’s green interval 
starts at 𝑡𝑡 = 0. 

The binary signal can be represented by 

𝜓𝜓𝑗𝑗(𝑡𝑡) = 𝐻𝐻�𝜋𝜋𝑗𝑗𝑇𝑇𝑗𝑗 − (𝑡𝑡 − Δ𝑗𝑗) 𝑚𝑚𝑚𝑚𝑑𝑑 𝑇𝑇𝑗𝑗� = �
1,     𝑡𝑡 ∈ 𝑖𝑖𝑇𝑇𝑗𝑗 + Δ𝑗𝑗 + �0,𝜋𝜋𝑗𝑗𝑇𝑇𝑗𝑗� 
0,     𝑡𝑡 ∈ 𝑖𝑖𝑇𝑇𝑗𝑗 + Δ𝑗𝑗 + [𝜋𝜋𝑗𝑗𝑇𝑇𝑗𝑗 ,𝑇𝑇𝑗𝑗)

   (2.1) 



where 𝑎𝑎 𝑚𝑚𝑚𝑚𝑑𝑑 𝑏𝑏  returns the remainder of 𝑎𝑎  divided by 𝑏𝑏 , and 𝐻𝐻(⋅) is the Heaviside function. 
Here a signal cycle is divided into green and red intervals, and we omit the yellow intervals. It is 
reasonable to assume that the signals are also 𝑚𝑚-periodical; i.e., 𝑇𝑇𝑗𝑗+𝑚𝑚 = 𝑇𝑇𝑗𝑗,𝜋𝜋𝑗𝑗+𝑚𝑚 = 𝜋𝜋𝑗𝑗 , 𝛿𝛿𝑗𝑗+𝑚𝑚 =
𝛿𝛿𝑗𝑗.  

 Here we consider homogeneous roads: 𝐿𝐿𝑗𝑗 = 𝐿𝐿 with 𝑇𝑇𝑗𝑗 = 𝑇𝑇, 𝜋𝜋𝑗𝑗 = 𝜋𝜋, 𝛿𝛿𝑗𝑗 = 𝑛𝑛
𝑚𝑚
𝑇𝑇, where 𝑛𝑛 

and 𝑚𝑚  are co-prime numbers. Hence Δ𝑗𝑗 = 𝑗𝑗 𝑛𝑛
𝑚𝑚
𝑇𝑇.  There are four parameters for the signal 

settings: the cycle length, 𝑇𝑇, the green ratio, 𝜋𝜋, and the two numbers for the offset, (𝑚𝑚, 𝑛𝑛). In this 
case, the infinite street is equivalent to a ring road with 𝑚𝑚 signals, as illustrated in Figure 2.1(c). 
Therefore the signal function can be written as 

𝜓𝜓𝑗𝑗(𝑡𝑡) = 𝐻𝐻 �𝜋𝜋𝑇𝑇 − (𝑡𝑡 − 𝑗𝑗
𝑛𝑛
𝑚𝑚
𝑇𝑇) 𝑚𝑚𝑚𝑚𝑑𝑑 𝑇𝑇� = �

1,     𝑡𝑡 ∈ 𝑖𝑖𝑇𝑇 + 𝑗𝑗
𝑛𝑛
𝑚𝑚
𝑇𝑇 + [0,𝜋𝜋𝑇𝑇) ;

0,     𝑡𝑡 ∈ 𝑖𝑖𝑇𝑇 + 𝑗𝑗
𝑛𝑛
𝑚𝑚
𝑇𝑇 + [𝜋𝜋𝑇𝑇,𝑇𝑇).

 

2.2 The link transmission model 
We denote the cumulative flow at signal 𝑗𝑗 by 𝐺𝐺𝑗𝑗(𝑡𝑡), with 𝐺𝐺0(0) = 0. Initially each link’s 

density is constant at 𝑘𝑘0. It is reasonable to assume that traffic dynamics are also 𝑚𝑚-periodical; 
i.e., 𝑔𝑔𝑗𝑗+𝑚𝑚(𝑡𝑡) = 𝑔𝑔𝑗𝑗(𝑡𝑡), which is the flow-rate. Thus 𝐺𝐺𝑗𝑗+𝑚𝑚(𝑡𝑡) = 𝐺𝐺𝑗𝑗(𝑡𝑡) −𝑚𝑚𝑘𝑘0. 

We assume that all links have the same triangular fundamental diagram: 

𝑞𝑞 = 𝑄𝑄(𝑘𝑘) = min{𝑢𝑢𝑘𝑘,𝑤𝑤(𝜅𝜅 − 𝑘𝑘)}, 

where u is the free-flow speed, -w the information propagation speed  in congested traffic, and κ 
the jam density. In addition, we denote the critical density by 𝜅𝜅𝑐𝑐, and the capacity by 𝜋𝜋: 

𝜅𝜅𝑐𝑐 =
𝑤𝑤

𝑢𝑢 + 𝑤𝑤
𝜅𝜅,     𝜋𝜋 = 𝑢𝑢𝜅𝜅𝑐𝑐. 

Then from the link transmission model, we have the following 𝑚𝑚 equations (𝑗𝑗 =
1,⋯ ,𝑚𝑚) after a long time 𝑡𝑡: 

𝐺𝐺𝑗𝑗(𝑡𝑡) =

�
min �𝐺𝐺𝑗𝑗−1 �𝑡𝑡 −

𝐿𝐿
𝑢𝑢
� ,𝐺𝐺𝑗𝑗+1 �𝑡𝑡 −

𝐿𝐿
𝑤𝑤
� + 𝜅𝜅𝐿𝐿,𝐺𝐺𝑗𝑗�𝑖𝑖𝑇𝑇 + Δ𝑗𝑗� + �𝑡𝑡 − 𝑖𝑖𝑇𝑇 − Δ𝑗𝑗�𝜋𝜋� ,   𝑡𝑡 ∈ 𝑖𝑖𝑇𝑇 + Δ𝑗𝑗 + (0,𝜋𝜋𝑇𝑇]

𝐺𝐺𝑗𝑗�𝑖𝑖𝑇𝑇 + Δ𝑗𝑗 + 𝜋𝜋𝑇𝑇�,                                                                                                    𝑡𝑡 ∈ 𝑖𝑖𝑇𝑇 + Δ𝑗𝑗 + (𝜋𝜋𝑇𝑇,𝑇𝑇]
   

(2.2) 



Here 𝐺𝐺0(𝑡𝑡) = 𝐺𝐺𝑚𝑚(𝑡𝑡) + 𝑚𝑚𝑘𝑘0,𝐺𝐺𝑚𝑚+1(𝑡𝑡) = 𝐺𝐺1(𝑡𝑡) −𝑚𝑚𝑘𝑘0. Equation (2.2) shows that the cumulative 
flows inside the green intervals are determined by three waves, and those inside the red intervals 
are constant, since no vehicles can cross the intersection. 

 In Equation (2.2), 𝐿𝐿
𝑢𝑢
 equals vehicles’ traverse time on a link, and 𝐿𝐿

𝑤𝑤
 equals the congestion 

building up time. We denote them by 

𝐿𝐿
𝑢𝑢

= 𝜃𝜃1𝑇𝑇 = (𝑙𝑙1 + 𝛼𝛼1)𝑇𝑇,      (2.3) 

𝐿𝐿
𝑤𝑤

= 𝜃𝜃2𝑇𝑇 = (𝑙𝑙2 + 𝛼𝛼2)𝑇𝑇,      (2.4) 

where 𝑙𝑙1 and 𝑙𝑙2 are integers, and 𝛼𝛼1,𝛼𝛼2 ∈ [0,1).  

 Hereafter we normalize time with respect to 𝑇𝑇, and Equation (2.2) is written as 

𝐺𝐺𝑗𝑗(𝑡𝑡) =

�
min �𝐺𝐺𝑗𝑗−1(𝑡𝑡 − 𝜃𝜃1),𝐺𝐺𝑗𝑗+1(𝑡𝑡 − 𝜃𝜃2) + 𝜅𝜅𝐿𝐿,𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
� + �𝑡𝑡 − 𝑖𝑖 − 𝑗𝑗 𝑛𝑛

𝑚𝑚
� 𝜋𝜋� ,   𝑡𝑡 ∈ 𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
+ (0,𝜋𝜋]

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� ,                                                                                                       𝑡𝑡 ∈ 𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ (𝜋𝜋, 1]
   

(2.5) 

 

 

  



Chapter 3 
Approximate macroscopic fundamental diagrams 

3.1 Stationary states 
We consider the simple periodic states with a period of 𝑇𝑇  as stationary states in the 

signalized ring road, where 𝑔𝑔(𝑡𝑡 + 𝑇𝑇)  =  𝑔𝑔(𝑡𝑡). Thus in stationary states we have 

𝐺𝐺(𝑡𝑡 + 𝑇𝑇) =  𝐺𝐺(𝑡𝑡) + 𝑞𝑞0𝑇𝑇,      (3.1) 

where  𝑞𝑞0 ∈ [0,𝜋𝜋𝜋𝜋] is the average flow-rate during a cycle. According to Equation (2.5), the 
cumulative flow at the end of the green interval equals that at the start plus 𝑞𝑞0𝑇𝑇; i.e., 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚
� + 𝑞𝑞0𝑇𝑇 = min �𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
+ 𝜋𝜋 − 𝜃𝜃1� ,𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
+ 𝜋𝜋 −

𝜃𝜃2� + 𝜅𝜅𝐿𝐿,𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚
� + 𝜋𝜋𝑇𝑇𝜋𝜋�.                 (3.2) 

Clearly 𝑞𝑞0 ≤ 𝜋𝜋𝜋𝜋, which is achieved when the boundary flow-rate equals the capacity during the 
whole green interval. 

A macroscopic fundamental diagram gives the following relationship: 

𝑞𝑞0 = 𝑄𝑄(𝑘𝑘0; 𝐿𝐿,𝑇𝑇,𝜋𝜋,𝑚𝑚,𝑛𝑛),     (3.3) 

which is a function of the density as well as the road and signal settings. We will derive 
approximate macroscopic fundamental diagrams from equation (3.2). 

3.2 Approximate macroscopic fundamental diagrams for (𝒎𝒎,𝒏𝒏) = (𝟏𝟏,𝟎𝟎) 
 When (𝑚𝑚,𝑛𝑛) = (1,0) , Δ𝑗𝑗 = 0 , and all signals are synchronized in a simultaneous 
progression. Denote 𝐺𝐺1(𝑡𝑡) = 𝐺𝐺(𝑡𝑡). Then 𝐺𝐺𝑗𝑗(𝑡𝑡) = 𝐺𝐺(𝑡𝑡) − (𝑗𝑗 − 1)𝑘𝑘0𝑇𝑇. As illustrated in Figure 
3.1, Equation (3.2) can be written as 

𝐺𝐺(𝑖𝑖 + 𝜋𝜋) = 𝐺𝐺(𝑖𝑖) + 𝑞𝑞0 𝑇𝑇
= min{𝐺𝐺(𝑖𝑖 + 𝜋𝜋 − 𝜃𝜃1) + 𝑘𝑘0𝐿𝐿,𝐺𝐺(𝑖𝑖 + 𝜋𝜋 − 𝜃𝜃2) + (𝜅𝜅 − 𝑘𝑘0)𝐿𝐿,𝐺𝐺(𝑖𝑖) + 𝜋𝜋𝑇𝑇𝜋𝜋} .    (3.4) 

We observe that 𝑞𝑞0 = 𝜋𝜋𝜋𝜋 if and only if 𝑔𝑔(𝑡𝑡) = 𝜋𝜋 ⋅ 𝐻𝐻(𝜋𝜋 − ϕ(𝑡𝑡)) and  

𝐺𝐺(𝑡𝑡) = 𝐺𝐺(0) + Ψ(t)𝑇𝑇𝜋𝜋, 

where Ψ(𝑡𝑡) = Φ(𝑡𝑡) 𝜋𝜋 + min {𝜙𝜙(𝑡𝑡),𝜋𝜋}, Φ(𝑡𝑡) = ⌊𝑡𝑡⌋ is the floor function, and 𝜙𝜙(𝑡𝑡) = 𝑡𝑡 − Φ(𝑡𝑡) =
𝑡𝑡 𝑚𝑚𝑚𝑚𝑑𝑑 1 is the remainder. Note that Ψ(𝑡𝑡) is the integral of the homogeneous signal function 



𝛽𝛽(𝑡𝑡). We have that 𝜋𝜋𝑡𝑡 ≤ Ψ(𝑡𝑡) ≤ 𝜋𝜋(𝑡𝑡 + 1 − 𝜋𝜋),  where the left equal sign holds when 𝜙𝜙(𝑡𝑡) = 0 
and the right equal sign holds when 𝜙𝜙(𝑡𝑡) = 𝜋𝜋. 

Thus Equation (3.4) can be written as  

𝜋𝜋𝜋𝜋𝑇𝑇 = min{Ψ(𝜋𝜋 − 𝜃𝜃1)𝑇𝑇𝜋𝜋 + 𝑘𝑘0𝐿𝐿,Ψ(𝜋𝜋 − 𝜃𝜃2) 𝑇𝑇𝜋𝜋 + (𝜅𝜅 − 𝑘𝑘0)𝐿𝐿,𝜋𝜋𝑇𝑇𝜋𝜋}, 

 

Figure 3.1 Illustration of the signal settings in the case (𝑚𝑚,𝑛𝑛) = (1,0) 

which leads to Ψ(𝜋𝜋 − 𝜃𝜃1)𝑇𝑇𝜋𝜋 + 𝑘𝑘0𝐿𝐿 ≥ 𝜋𝜋𝑇𝑇𝜋𝜋  and Ψ(𝜋𝜋 − 𝜃𝜃2)𝑇𝑇𝜋𝜋 + (𝜅𝜅 − 𝑘𝑘0)𝐿𝐿 ≥ 𝜋𝜋𝑇𝑇𝜋𝜋 . Therefore, 
𝑞𝑞0 = 𝜋𝜋𝜋𝜋 if and only if 

𝑘𝑘1 ≤ 𝑘𝑘0 ≤ 𝑘𝑘2, 

where 

𝑘𝑘1 =
𝑇𝑇𝜋𝜋
𝐿𝐿

[𝜋𝜋 − Ψ(𝜋𝜋 − 𝜃𝜃1)] =
𝑙𝑙1 + min �𝛼𝛼1𝜋𝜋 , 1�

𝜃𝜃1
𝜋𝜋𝜅𝜅𝑐𝑐, 

𝑘𝑘2 = 𝜅𝜅 −
𝑇𝑇𝜋𝜋
𝐿𝐿

[𝜋𝜋 −Ψ(𝜋𝜋 − 𝜃𝜃2)] = 𝜅𝜅 −
𝑙𝑙2 + min �𝛼𝛼2𝜋𝜋 , 1�

𝜃𝜃2
𝜋𝜋
𝜋𝜋
𝑤𝑤

. 

Further we have the following lemma. 

Lemma 3.1 𝑘𝑘1 and 𝑘𝑘2 satisfy 𝜋𝜋𝜅𝜅𝑐𝑐 ≤ 𝑘𝑘1 ≤ 𝜅𝜅𝑐𝑐 ≤ 𝑘𝑘2 ≤ 𝜅𝜅 − 𝜋𝜋 𝐶𝐶
𝑤𝑤

. 

Then we can approximate the macroscopic fundamental diagram by a trapezoidal function. 



Theorem 3.2 The macroscopic fundamental diagram can be approximated by the following 
trapezoidal function 

𝑞𝑞0 = 𝑄𝑄(𝑘𝑘0; 𝐿𝐿,𝑇𝑇,𝜋𝜋, 1,1) ≈ min �𝜕𝜕0
𝜕𝜕1

, 1, 𝜅𝜅−𝜕𝜕0
𝜅𝜅−𝜕𝜕2

�  𝜋𝜋𝜋𝜋.     (3.5) 

Note that the macroscopic fundamental diagram is accurate when 𝑘𝑘1 ≤ 𝑘𝑘0 ≤ 𝑘𝑘2. The 
approximate macroscopic fundamental diagram is shown in Figure 3.2. 

 

 

Figure 3.2 An approximate trapezoidal macroscopic fundamental diagram for (𝑚𝑚,𝑛𝑛) = (1,0) 

3.3 Approximate macroscopic fundamental diagrams for (𝒎𝒎,𝒏𝒏) = (𝟐𝟐,𝟏𝟏) 

 When (𝑚𝑚,𝑛𝑛) = (2,1) , Δ𝑗𝑗 = 𝑗𝑗 1
2
𝑇𝑇 . 𝐺𝐺0(𝑡𝑡) = 𝐺𝐺2(𝑡𝑡) + 2𝑘𝑘0𝐿𝐿,𝐺𝐺3(𝑡𝑡) = 𝐺𝐺1(𝑡𝑡) − 2𝑘𝑘0𝐿𝐿,  and 

Equation (3.2) can be written as 

𝐺𝐺1 �𝑖𝑖 + 1
2

+ 𝜋𝜋� = 𝐺𝐺1 �𝑖𝑖 + 1
2
� + 𝑞𝑞0𝑇𝑇 = min �𝐺𝐺2 �𝑖𝑖 + 1

2
+ 𝜋𝜋 − 𝜃𝜃1� + 2𝑘𝑘0𝐿𝐿,𝐺𝐺2 �𝑖𝑖 + 1

2
+ 𝜋𝜋 − 𝜃𝜃2� +

𝜅𝜅𝐿𝐿,𝐺𝐺1 �𝑖𝑖 + 1
2
� + 𝜋𝜋𝑇𝑇𝜋𝜋�.         (3.6) 

𝐺𝐺2(𝑖𝑖 + 1 + 𝜋𝜋) = 𝐺𝐺2(𝑖𝑖 + 1) + 𝑞𝑞0𝑇𝑇 = min{𝐺𝐺1(𝑖𝑖 + 1 + 𝜋𝜋 − 𝜃𝜃1),𝐺𝐺1(𝑖𝑖 + 1 + 𝜋𝜋 − 𝜃𝜃2) + (𝜅𝜅 −
2𝑘𝑘0)𝐿𝐿,𝐺𝐺2(𝑖𝑖 + 1) + 𝜋𝜋𝑇𝑇𝜋𝜋}.            (3.7) 

 We observe that 𝑞𝑞0 = 𝜋𝜋𝜋𝜋 if and only if  

𝐺𝐺2 �𝑖𝑖 + 1
2

+ 𝜋𝜋 − 𝜃𝜃1� + 2𝑘𝑘0𝐿𝐿 ≥ 𝐺𝐺1 �𝑖𝑖 + 1
2
� + 𝜋𝜋𝑇𝑇𝜋𝜋,    (3.8) 

𝐺𝐺1(𝑖𝑖 + 1 + 𝜋𝜋 − 𝜃𝜃1) ≥ 𝐺𝐺2(𝑖𝑖 + 1) + 𝜋𝜋𝑇𝑇𝜋𝜋,    (3.9) 

𝐺𝐺2 �𝑖𝑖 + 1
2

+ 𝜋𝜋 − 𝜃𝜃2� + 𝜅𝜅𝐿𝐿 ≥ 𝐺𝐺1 �𝑖𝑖 + 1
2
� + 𝜋𝜋𝑇𝑇𝜋𝜋,   (3.10) 

𝐺𝐺1(𝑖𝑖 + 1 + 𝜋𝜋 − 𝜃𝜃2) + (𝜅𝜅 − 2𝑘𝑘0)𝐿𝐿 ≥ 𝐺𝐺2(𝑖𝑖 + 1) + 𝜋𝜋𝑇𝑇𝜋𝜋.   (3.11) 



Also note that 𝐺𝐺2(𝑖𝑖 + 1 + 𝑡𝑡) = 𝐺𝐺2(𝑖𝑖 + 1) + Ψ(𝑡𝑡)𝑇𝑇𝜋𝜋 , and 𝐺𝐺1 �𝑖𝑖 + 1
2

+ 𝑡𝑡� = 𝐺𝐺1 �𝑖𝑖 + 1
2
� +

Ψ(𝑡𝑡)𝑇𝑇𝜋𝜋. Thus combining Equations (3.8) and (3.9), we obtain 

𝑘𝑘0 ≥ 𝑘𝑘1 ≡
𝑇𝑇𝐶𝐶
𝐿𝐿
�𝜋𝜋
2
− Ψ�𝜋𝜋 − 1

2
− 𝜃𝜃1��.    (3.12) 

Similarly, combining Equations (3.10) and (3.11), we obtain 

 𝑘𝑘0 ≤ 𝑘𝑘2 ≡ 𝜅𝜅 − 𝑇𝑇𝐶𝐶
𝐿𝐿
�𝜋𝜋
2
− Ψ�𝜋𝜋 − 1

2
− 𝜃𝜃2��.   (3.13) 

When 𝑘𝑘1 ≤ 𝑘𝑘2, the approximate macroscopic fundamental diagram can be written as in Equation 
(3.5): 

𝑞𝑞0 = 𝑄𝑄(𝑘𝑘0; 𝐿𝐿,𝑇𝑇,𝜋𝜋, 2,1) ≈ min �𝜕𝜕0
𝜕𝜕1

, 1, 𝜅𝜅−𝜕𝜕0
𝜅𝜅−𝜕𝜕2

�  𝜋𝜋𝜋𝜋.    (3.14) 

Note that, however, 𝑘𝑘1 may not be smaller than 𝑘𝑘2. When 𝑘𝑘1 > 𝑘𝑘2, the maximum flow-
rate of 𝑞𝑞0 < 𝜋𝜋𝜋𝜋. More discussions are provided in Chapter 4. Also note that we cannot assume 
that the number of vehicles on each street is always 𝑘𝑘0. Further note that conditions in (3.12) and 
(3.13) are both necessary and sufficient conditions, but the proof is omitted here. Intuitively this 
is due to the translational symmetry and unique information propagation direction. 

3.4 Approximate macroscopic fundamental diagrams for general (𝒎𝒎,𝒏𝒏) 
For more general networks with different (𝑚𝑚,𝑛𝑛), if the flow-rate equals the capacity 

during the green intervals at all intersections. Then we have 

𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1)
𝑛𝑛
𝑚𝑚

+ 𝜋𝜋 +
𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1)

𝑛𝑛
𝑚𝑚
� + Ψ�𝜋𝜋 +

𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� 𝑇𝑇𝜋𝜋, 

𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1)
𝑛𝑛
𝑚𝑚

+ 𝜋𝜋 −
𝑛𝑛
𝑚𝑚
− 𝜃𝜃2� = 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1)

𝑛𝑛
𝑚𝑚
� + Ψ�𝜋𝜋 −

𝑛𝑛
𝑚𝑚
− 𝜃𝜃2� 𝑇𝑇𝜋𝜋. 

Thus Equation (3.2) can be written as (𝑞𝑞0 = 𝜋𝜋𝜋𝜋) 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗
𝑛𝑛
𝑚𝑚
� + 𝜋𝜋𝜋𝜋𝑇𝑇

= min �𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1)
𝑛𝑛
𝑚𝑚
� + Ψ�𝜋𝜋 +

𝑛𝑛
𝑚𝑚
− 𝜃𝜃1�𝑇𝑇𝜋𝜋,𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1)

𝑛𝑛
𝑚𝑚
� + 𝜅𝜅𝐿𝐿

+ Ψ�𝜋𝜋 −
𝑛𝑛
𝑚𝑚
− 𝜃𝜃2�𝑇𝑇𝜋𝜋,𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗

𝑛𝑛
𝑚𝑚
� + 𝜋𝜋𝑇𝑇𝜋𝜋�. 

Thus we have the following 2𝑚𝑚 inequalities: (𝑗𝑗 = 1,⋯ ,𝑚𝑚) 

𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1) 𝑛𝑛
𝑚𝑚
� + Ψ�𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 𝜃𝜃1�𝑇𝑇𝜋𝜋 ≥ 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
� + 𝜋𝜋𝑇𝑇𝜋𝜋,   (3.15) 

𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
� + 𝜅𝜅𝐿𝐿 + Ψ�𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2� 𝑇𝑇𝜋𝜋 ≥ 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
� + 𝜋𝜋𝑇𝑇𝜋𝜋.  (3.16) 

Combining the 𝑚𝑚 inequalities in (3.15), we have 

𝐺𝐺0(𝑖𝑖) + 𝑚𝑚Ψ�𝜋𝜋 +
𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� 𝑇𝑇𝜋𝜋 ≥ 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝑛𝑛) + 𝑚𝑚𝜋𝜋𝑇𝑇𝜋𝜋. 

Since 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝑛𝑛) = 𝐺𝐺𝑚𝑚(𝑖𝑖) + 𝑛𝑛𝜋𝜋𝑇𝑇𝜋𝜋 = 𝐺𝐺0(𝑖𝑖) −𝑚𝑚𝑘𝑘0𝐿𝐿, we have 

𝑘𝑘0 ≥ 𝑘𝑘1 ≡
𝑇𝑇𝐶𝐶
𝐿𝐿
��1 + 𝑛𝑛

𝑚𝑚
� 𝜋𝜋 − Ψ�𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 𝜃𝜃1�� = 𝐶𝐶

𝑢𝑢

�1+𝑛𝑛
𝑚𝑚�𝜋𝜋−Ψ�𝜋𝜋+

𝑛𝑛
𝑚𝑚−𝜃𝜃1�

𝜃𝜃1
.   (3.17) 



Combining the 𝑚𝑚 inequalities in (3.16), we have 
 

𝐺𝐺𝑚𝑚+1 �𝑖𝑖 + (𝑚𝑚 + 1)
𝑛𝑛
𝑚𝑚
�+ 𝑚𝑚𝜅𝜅𝐿𝐿 + 𝑚𝑚Ψ�𝜋𝜋 −

𝑛𝑛
𝑚𝑚
− 𝜃𝜃2�𝑇𝑇𝜋𝜋 ≥ 𝐺𝐺1 �𝑖𝑖 +

𝑛𝑛
𝑚𝑚
� + 𝑚𝑚𝜋𝜋𝑇𝑇𝜋𝜋. 

 

Since 𝐺𝐺𝑚𝑚+1 �𝑖𝑖 + (𝑚𝑚 + 1) 𝑛𝑛
𝑚𝑚
� = 𝐺𝐺𝑚𝑚+1 �𝑖𝑖 + 𝑛𝑛

𝑚𝑚
� + 𝑛𝑛𝜋𝜋𝑇𝑇𝜋𝜋 = 𝐺𝐺1 �𝑖𝑖 + 𝑛𝑛

𝑚𝑚
� − 𝑚𝑚𝑘𝑘0𝐿𝐿 + 𝑛𝑛𝜋𝜋𝑇𝑇𝜋𝜋, we have 

𝑘𝑘0 ≤ 𝑘𝑘2 ≡ 𝜅𝜅 − 𝑇𝑇𝐶𝐶
𝐿𝐿
��1 − 𝑛𝑛

𝑚𝑚
�𝜋𝜋 − Ψ�𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2�� = 𝜅𝜅 − 𝐶𝐶

𝑤𝑤

�1−𝑛𝑛
𝑚𝑚�𝜋𝜋−Ψ�𝜋𝜋−

𝑛𝑛
𝑚𝑚−𝜃𝜃2�

𝜃𝜃2
.  (3.18) 

Then when 𝑘𝑘1 ≤ 𝑘𝑘2, which is equivalent to  

𝜃𝜃1 + Ψ�𝜋𝜋 +
𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 + Ψ�𝜋𝜋 −

𝑛𝑛
𝑚𝑚
− 𝜃𝜃2� ≥ 2𝜋𝜋, 

the approximate macroscopic fundamental diagram can be written as: 

𝑞𝑞0 = 𝑄𝑄(𝑘𝑘0; 𝐿𝐿,𝑇𝑇,𝜋𝜋,𝑚𝑚,𝑛𝑛) ≈ min �𝜕𝜕0
𝜕𝜕1

, 1, 𝜅𝜅−𝜕𝜕0
𝜅𝜅−𝜕𝜕2

�  𝜋𝜋𝜋𝜋.   (3.19) 

Note that (3.5) and (3.14) are special cases of (3.19). Also note that such an approximate 
macroscopic fundamental diagram can be derived for periodical road with varying length 𝐿𝐿𝑗𝑗, 
free-flow speed 𝑢𝑢𝑗𝑗 , congestion wave speed 𝑤𝑤𝑗𝑗, and offset 𝜎𝜎𝑗𝑗. 

    From Equation (3.19) we can see that the maximum flow-rate, referred to as the 
network capacity, equals 𝜋𝜋𝜋𝜋 when 𝑘𝑘1 ≤ 𝑘𝑘2. However, when 𝑘𝑘1 > 𝑘𝑘2, which is equivalent to 

𝜃𝜃1 + Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 + Ψ�𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2� < 2𝜋𝜋,   (3.20) 

the network capacity is smaller than 𝜋𝜋𝜋𝜋. In this case, from Equation the capacity is reached 
when  

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚
� + 𝑞𝑞0𝑇𝑇 = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
+ 𝜋𝜋 − 𝜃𝜃1� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛

𝑚𝑚
+ 𝜋𝜋 − 𝜃𝜃2� + 𝜅𝜅𝐿𝐿. 

(3.21) 

This equation will be solved in Chapter 4. 

 

  



Chapter 4 
Analysis of the impacts of signal settings 

In this chapter, we analyze the impacts of signal settings on the network flow-rate 𝑞𝑞0. 

4.1 Impacts of the cycle length 
 For (𝑚𝑚,𝑛𝑛) = (1,1) we analyze the impacts of the cycle length on the network flow-rate. 
We denote 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = 𝜕𝜕0

𝜕𝜕1
𝜋𝜋𝜋𝜋 , and 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = 𝜅𝜅−𝜕𝜕0

𝜅𝜅−𝜕𝜕1
𝜋𝜋𝜋𝜋 . Then we have the following 

properties for them: 

1. When 𝑙𝑙1 = 0 and 0 < 𝛼𝛼1 < 1, 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = � 𝜋𝜋𝑢𝑢𝑘𝑘0, 0 < 𝛼𝛼1 ≤ 𝜋𝜋,
𝛼𝛼1𝑢𝑢𝑘𝑘0,𝜋𝜋 < 𝛼𝛼1 < 1.When 𝑙𝑙1 ≥ 1 and 0 ≤

𝛼𝛼1 < 1, 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = �

𝑙𝑙1+𝛼𝛼1
𝜋𝜋𝑙𝑙1+𝛼𝛼1

𝜋𝜋𝑢𝑢𝑘𝑘0, 0 ≤ 𝛼𝛼1 ≤ 𝜋𝜋,
𝑙𝑙1+𝛼𝛼
𝑙𝑙1+1 

𝑢𝑢𝑘𝑘0,𝜋𝜋 < 𝛼𝛼1 < 1.
Thus 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) is continuous in 𝜃𝜃1; 

it retains the global minimum 𝜋𝜋𝑢𝑢𝑘𝑘0  when 0 < 𝜃𝜃1 = 𝛼𝛼1 ≤ 𝜋𝜋 , reaches the global 
maximum 𝑢𝑢𝑘𝑘0 when 𝜃𝜃1 = 𝑙𝑙1, and reaches local minima 𝑙𝑙1+𝜋𝜋

𝑙𝑙1+1
𝑢𝑢𝑘𝑘0 when 𝜃𝜃1 = 𝑙𝑙1 + 𝜋𝜋. 

2. When 𝑙𝑙2 = 0  and 0 < 𝛼𝛼2 < 1 , 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = �𝜋𝜋
(𝜅𝜅 − 𝑘𝑘0)𝑤𝑤, 0 < 𝛼𝛼2 ≤ 𝜋𝜋,

𝛼𝛼2(𝜅𝜅 − 𝑘𝑘0)𝑤𝑤,𝜋𝜋 < 𝛼𝛼2 < 1.When 𝑙𝑙2 ≥ 1 

and 0 ≤ 𝛼𝛼2 < 1, 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = �

𝑙𝑙2+𝛼𝛼2
𝜋𝜋𝑙𝑙2+𝛼𝛼2

 𝜋𝜋(𝜅𝜅 − 𝑘𝑘0)𝑤𝑤, 0 < 𝛼𝛼2 ≤ 𝜋𝜋,
𝑙𝑙2+𝛼𝛼2
𝑙𝑙2+1

(𝜅𝜅 − 𝑘𝑘0)𝑤𝑤,𝜋𝜋 < 𝛼𝛼2 < 1.
Thus 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋)  is 

continuous in 𝜃𝜃2 ; it retains the global minimum 𝜋𝜋𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) when 0 < 𝜃𝜃2 = 𝛼𝛼2 ≤ 𝜋𝜋 , 
reaches the global maximum 𝑢𝑢(𝜅𝜅 − 𝑘𝑘0)  when 𝜃𝜃2 = 𝑙𝑙2 , and reaches local minima 
𝑙𝑙2+𝜋𝜋
𝑙𝑙2+1

𝑢𝑢(𝜅𝜅 − 𝑘𝑘0) when 𝜃𝜃2 = 𝑙𝑙2 + 𝜋𝜋.  

Since 𝜃𝜃1 = 𝐿𝐿
𝑢𝑢𝑇𝑇

 and 𝜃𝜃2 = 𝐿𝐿
𝑤𝑤𝑇𝑇

, we can have the following properties for 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋)  and 
𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋). 

Lemma 4.1 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) and 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) are functions of 𝑇𝑇, as shown in Figure 4.1. 

1. 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) is continuous in 𝑇𝑇 ; it retains the global minimum 𝜋𝜋𝑢𝑢𝑘𝑘0  when 
𝑇𝑇 ≥ 1

𝜋𝜋
𝐿𝐿
𝑢𝑢
, reaches the global maximum 𝑢𝑢𝑘𝑘0 when 𝑇𝑇 = 1

𝑙𝑙1

𝐿𝐿
𝑢𝑢
, and reaches local 

minima 𝑙𝑙1+𝜋𝜋
𝑙𝑙1+1

𝑢𝑢𝑘𝑘0  when 𝑇𝑇 = 1
𝑙𝑙1+𝜋𝜋

𝐿𝐿
𝑢𝑢

. In particular, when 𝐿𝐿
𝑢𝑢
≤ 𝑇𝑇 ≤ 1

𝜋𝜋
𝐿𝐿
𝑢𝑢

, 

𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) decreases in 𝑇𝑇: 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = 𝜕𝜕0𝐿𝐿
𝑇𝑇

. 
2. 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) is continuous in 𝑇𝑇; it retains the global minimum 𝜋𝜋𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) 

when 𝑇𝑇 ≥ 1
𝜋𝜋
𝐿𝐿
𝑊𝑊

, reaches the global maximum 𝑢𝑢(𝜅𝜅 − 𝑘𝑘0) when 𝑇𝑇 = 1
𝑙𝑙2

𝐿𝐿
𝑤𝑤

, and 



reaches local minima 𝑙𝑙2+𝜋𝜋
𝑙𝑙2+1

𝑢𝑢(𝜅𝜅 − 𝑘𝑘0)  when 𝑇𝑇 = 1
𝑙𝑙2+𝜋𝜋

𝐿𝐿
𝑤𝑤

. In particular, when 
𝐿𝐿
𝑤𝑤
≤ 𝑇𝑇 ≤ 1

𝜋𝜋
𝐿𝐿
𝑤𝑤

, 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) decreases in 𝑇𝑇: 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = (κ−k0)𝐿𝐿
𝑇𝑇

. 
 

 

 

(a) 

 

(b) 

Figure 4.1 Flow-cycle length relation: (a) 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) (b) 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋) 

From (3.5) we can see that the flow-rate 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) decreases in 𝑘𝑘1 and increases in 𝑘𝑘2. In 
particular, we have the following Lemma. 



Lemma 4.2 In the following five region for 𝑘𝑘0, 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) varies with 𝑘𝑘1 ∈ [𝜋𝜋𝜅𝜅𝑐𝑐, 𝜅𝜅𝑐𝑐] and 

𝑘𝑘2 ∈ �𝜅𝜅𝑐𝑐, 𝜅𝜅 − 𝜋𝜋 𝐶𝐶
𝑤𝑤
� as follows: 

1. When 𝑘𝑘0 ∈ [0,𝜋𝜋𝜅𝜅𝑐𝑐]; i.e., when traffic is very sparse, 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = 𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋) for 
𝑘𝑘1 ∈ [𝜋𝜋𝜅𝜅𝑐𝑐 , 𝜅𝜅𝑐𝑐], which decreases in 𝑘𝑘1 and is independent of 𝑘𝑘2. In this case, the 
global maximum flow-rate is 𝑢𝑢𝑘𝑘0 when 𝑇𝑇 = 1

𝑙𝑙1

𝐿𝐿
𝑢𝑢
, and the global minimum flow-rate is 

𝜋𝜋𝑢𝑢𝑘𝑘0 when 𝑇𝑇 ≥ 1
𝜋𝜋
𝐿𝐿
𝑢𝑢
. 

2. When 𝑘𝑘0 ∈ [𝜋𝜋𝜅𝜅𝑐𝑐 , 𝜅𝜅𝑐𝑐]; i.e., when traffic is sparse, 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) =
min {𝑄𝑄1(𝑘𝑘0;𝑇𝑇,𝜋𝜋),𝜋𝜋𝜋𝜋}, which is first constant for 𝑘𝑘1 ∈ [𝜋𝜋𝜅𝜅𝑐𝑐, 𝑘𝑘0], then decreases for 
𝑘𝑘1 ∈ (𝑘𝑘0, 𝜅𝜅𝑐𝑐] , and is independent of 𝑘𝑘2. In this case, the global maximum flow-rate is 
𝜋𝜋𝜋𝜋 when 𝑇𝑇 = 1

𝑙𝑙1

𝐿𝐿
𝑢𝑢
, and the global minimum flow-rate is 𝜋𝜋𝑢𝑢𝑘𝑘0 when 𝑇𝑇 ≥ 1

𝜋𝜋
𝐿𝐿
𝑢𝑢
. 

3. When 𝑘𝑘0 = 𝜅𝜅𝑐𝑐; i.e., when traffic is critical, 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = 𝜋𝜋𝜋𝜋, which is constant for 
any 𝑘𝑘1 and 𝑘𝑘2. 

4. When 𝑘𝑘0 ∈ �𝜅𝜅𝑐𝑐, 𝜅𝜅 − 𝜋𝜋 𝐶𝐶
𝑤𝑤
�; i.e., when traffic is dense, 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) =

min {𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋),𝜋𝜋𝜋𝜋}, which is first increasing for 𝑘𝑘2 ∈ [𝜅𝜅𝑐𝑐,𝑘𝑘0], then constant for 
𝑘𝑘2 ∈ (𝑘𝑘0, 𝜅𝜅 − 𝜋𝜋 𝐶𝐶

𝑤𝑤
] , and is independent of 𝑘𝑘1. In this case, the global maximum flow-

rate is 𝜋𝜋𝜋𝜋 when 𝑇𝑇 = 1
𝑙𝑙2

𝐿𝐿
𝑤𝑤

, and the global minimum flow-rate is 𝜋𝜋𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) when 

𝑇𝑇 ≥ 1
𝜋𝜋
𝐿𝐿
𝑤𝑤

. 

5. When 𝑘𝑘0 ∈ �𝜅𝜅 − 𝜋𝜋 𝐶𝐶
𝑤𝑤

, 𝜅𝜅�; i.e., when traffic is very dense, 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) = 𝑄𝑄2(𝑘𝑘0;𝑇𝑇,𝜋𝜋), 
which is first increasing in 𝑘𝑘2, and is independent of 𝑘𝑘1. In this case, the global 
maximum flow-rate is 𝜋𝜋𝜋𝜋 when 𝑇𝑇 = 1

𝑙𝑙2

𝐿𝐿
𝑤𝑤

, and the global minimum flow-rate is 

𝜋𝜋𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) when 𝑇𝑇 ≥ 1
𝜋𝜋
𝐿𝐿
𝑤𝑤

. 

From Lemmas 4.1 and 4.2, we can then determine 𝑄𝑄(𝑘𝑘0;𝑇𝑇,𝜋𝜋) for any cycle length 𝑇𝑇 and 
the effective green ratio 𝜋𝜋, and a density 𝑘𝑘0. 

4.2 Impacts of the offset 
 For general (𝑚𝑚,𝑛𝑛), from the property of Ψ(𝑡𝑡) we have that  

(1 − 𝜋𝜋)(𝜃𝜃1 + 𝜃𝜃2) + 2𝜋𝜋 ≥ 𝜃𝜃1 + Ψ�𝜋𝜋 +
𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 + Ψ�𝜋𝜋 −

𝑛𝑛
𝑚𝑚
− 𝜃𝜃2�

≥ (1 − 𝜋𝜋)(𝜃𝜃1 + 𝜃𝜃2) + 2𝜋𝜋2. 

Thus, if 𝜃𝜃1 + 𝜃𝜃2 ≥ 2𝜋𝜋, or if 𝑇𝑇 ≤ 𝐿𝐿𝜅𝜅
2𝜋𝜋𝐶𝐶

, then the approximate macroscopic fundamental diagram in 
(3.19) applies. Thus the necessary condition for the network capacity to be smaller than 𝜋𝜋𝜋𝜋 is 

𝜃𝜃1 + 𝜃𝜃2 < 2𝜋𝜋. 



 From Figure 4.2 for the properties of Ψ(𝜃𝜃) and 𝜃𝜃 + Ψ(𝜃𝜃), we can see that both are 
increasing functions in 𝜃𝜃. Thus we have the following lemma. 

Lemma 4.3. The sufficient and necessary condition for 𝜃𝜃1 + Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 +

Ψ�𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2� < 2𝜋𝜋  is 𝜃𝜃1 < 𝑛𝑛

𝑚𝑚
 , 𝜃𝜃2 < 1 − 𝑛𝑛

𝑚𝑚
, and 𝜃𝜃1 + 𝜃𝜃2 < 𝜋𝜋 . That is, if either 𝜃𝜃1 ≥

𝑛𝑛
𝑚𝑚

 or 

𝜃𝜃2 ≥ 1 − 𝑛𝑛
𝑚𝑚

 or 𝜃𝜃1 + 𝜃𝜃2 ≥ 𝜋𝜋 , then 𝜃𝜃1 + Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 + Ψ�𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2� ≥ 2𝜋𝜋 , and the 

approximate macroscopic fundamental diagram in (3.19) applies. 

 
 

(a) (b) 

  

(c) (d) 

  

Figure 4.2 Illustrations of Ψ(𝜃𝜃), 𝜃𝜃 + Ψ(𝜋𝜋 − 𝜃𝜃), 𝜃𝜃1 −
𝑛𝑛
𝑚𝑚

+ Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1�, and 𝜃𝜃2 + 𝑛𝑛

𝑚𝑚
+

Ψ(𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2) 

  



 

Figure 4.3 Four regions when the network capacity is smaller than 𝜋𝜋𝜋𝜋 

When the network capacity is smaller than 𝜋𝜋𝜋𝜋, or equivalently, 𝜃𝜃1 + Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� +

𝜃𝜃2 + Ψ�𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2� < 2𝜋𝜋, Equation (3.21) can be written as 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋 − 𝜃𝜃1� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋 − 𝜃𝜃2� + 𝜅𝜅𝐿𝐿,  (4.1) 

which is equivalent to 

 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1) 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛

𝑚𝑚
+ 𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2� + 𝜅𝜅𝐿𝐿.   (4.2) 

According to Lemma 4.3, when the network capacity is smaller than 𝜋𝜋𝜋𝜋 , there are four regions of 
(𝜃𝜃1,𝜃𝜃2) , as illustrated in Figure 4.3. In the following we find the network capacity 𝑞𝑞∗  and the 
corresponding density 𝑘𝑘∗ for the four regions: 

1. In region 1, 𝜋𝜋 − 1 + 𝑛𝑛
𝑚𝑚
≤ 𝜃𝜃1 < 𝑛𝑛

𝑚𝑚
 and 𝜋𝜋 − 𝑛𝑛

𝑚𝑚
≤ 𝜃𝜃2 < 1 − 𝑛𝑛

𝑚𝑚
. Thus 𝜋𝜋 < 𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 𝜃𝜃1 ≤ 1 

and −1 + 𝜋𝜋 < 𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2 ≤ 0, and Equation (4.2) can be written as 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1) 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
�+ 𝜅𝜅𝐿𝐿.  (4.3) 

Hence 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝑛𝑛 + 𝜋𝜋) = 𝐺𝐺0(𝑖𝑖 + 𝜋𝜋), which leads to 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝜋𝜋) + 𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝜋𝜋) +
𝑚𝑚𝑘𝑘∗𝐿𝐿, or equivalently 

𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝑚𝑚𝑘𝑘∗𝐿𝐿.     (4.4) 

In addition, 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
� + 𝜅𝜅𝐿𝐿, 

which leads to 𝑞𝑞∗𝑇𝑇 = 𝜅𝜅𝐿𝐿, or equivalently 



𝑞𝑞∗ = 𝜅𝜅𝐿𝐿
𝑇𝑇

= (𝜃𝜃1 + 𝜃𝜃2)𝜋𝜋.    (4.5) 

From Equation (4.4) we further have 

𝑘𝑘∗ = 𝑛𝑛
𝑚𝑚
𝜅𝜅.      (4.6) 

2. In region 2, 𝜋𝜋 − 1 + 𝑛𝑛
𝑚𝑚
≤ 𝜃𝜃1 < 𝑛𝑛

𝑚𝑚
 and 0≤ 𝜃𝜃2 < 𝜋𝜋 − 𝑛𝑛

𝑚𝑚
. Thus 𝜋𝜋 < 𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 𝜃𝜃1 ≤ 1  and 

0 < 𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2 ≤ 𝜋𝜋 − 𝑛𝑛

𝑚𝑚
, and Equation (4.2) can be written as 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1) 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
� + (𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2)𝜋𝜋𝑇𝑇 + 𝜅𝜅𝐿𝐿. (4.7) 

Hence 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝑛𝑛 + 𝜋𝜋) = 𝐺𝐺0(𝑖𝑖 + 𝜋𝜋), which leads to 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝜋𝜋) + 𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝜋𝜋) +
𝑚𝑚𝑘𝑘∗𝐿𝐿, or equivalently 

𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝑚𝑚𝑘𝑘∗𝐿𝐿.     (4.8) 

In addition, 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� = 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 𝜋𝜋� =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
� + (𝜋𝜋 − 𝑛𝑛

𝑚𝑚
−

𝜃𝜃2)𝜋𝜋𝑇𝑇 + 𝜅𝜅𝐿𝐿, which leads to 𝑞𝑞∗𝑇𝑇 = �𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2� 𝜋𝜋𝑇𝑇 + 𝜅𝜅𝐿𝐿, or equivalently 

𝑞𝑞∗ = 𝜅𝜅𝐿𝐿
𝑇𝑇

+ (𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2)𝜋𝜋 = �𝜋𝜋 − 𝑛𝑛

𝑚𝑚
+ 𝜃𝜃1� 𝜋𝜋.    (4.9) 

From Equation (4.8) we further have 

𝑘𝑘∗ = 𝑛𝑛
𝑚𝑚

�𝜋𝜋−𝑛𝑛
𝑚𝑚+𝜃𝜃1�

𝜃𝜃1+𝜃𝜃2
𝜅𝜅.      (4.10) 

3. In region 3, 0 ≤ 𝜃𝜃1 < 𝜋𝜋 − 1 + 𝑛𝑛
𝑚𝑚

 and 𝜋𝜋 − 𝑛𝑛
𝑚𝑚
≤ 𝜃𝜃2 < 1 − 𝑛𝑛

𝑚𝑚
. Thus 1 < 𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 𝜃𝜃1 ≤ 𝜋𝜋 +

𝑛𝑛
𝑚𝑚

 and −1 + 𝜋𝜋 < 𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2 ≤ 0, and Equation (4.2) can be written as 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 1� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1) 𝑛𝑛
𝑚𝑚

+ 1� + (𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇 =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛

𝑚𝑚
� + 𝜅𝜅𝐿𝐿.  (4.11) 

Hence 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝑛𝑛 + 𝜋𝜋) = 𝐺𝐺0(𝑖𝑖 + 𝜋𝜋) + 𝑚𝑚(𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇, which leads to 𝐺𝐺𝑚𝑚(𝑖𝑖 +

𝜋𝜋) + 𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝜋𝜋) + 𝑚𝑚𝑘𝑘∗𝐿𝐿 + 𝑚𝑚(𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇, or equivalently 

𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝑚𝑚𝑘𝑘∗𝐿𝐿 + 𝑚𝑚(𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇.     (4.12) 

In addition, 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚

+ 1� = 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 1� + (𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇 =

 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
� + 𝜅𝜅𝐿𝐿 + (𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇, which leads to 𝑞𝑞∗𝑇𝑇 = 𝜅𝜅𝐿𝐿 + (𝜋𝜋 + 𝑛𝑛

𝑚𝑚
−

1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇, or equivalently 



𝑞𝑞∗ = 𝜅𝜅𝐿𝐿
𝑇𝑇

+ (𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋 = �𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 1 + 𝜃𝜃2� 𝜋𝜋.  (4.13) 

From Equation (4.12) we further have 

𝑘𝑘∗ =
𝑛𝑛
𝑚𝑚�𝜋𝜋+

𝑛𝑛
𝑚𝑚−1+𝜃𝜃2�−�𝜋𝜋+

𝑛𝑛
𝑚𝑚−1−𝜃𝜃1�

𝜃𝜃1+𝜃𝜃2
𝜅𝜅.      (4.14) 

4. In region 4, 0 ≤ 𝜃𝜃1 < 𝜋𝜋 − 1 + 𝑛𝑛
𝑚𝑚

 and 0≤ 𝜃𝜃2 < 𝜋𝜋 − 𝑛𝑛
𝑚𝑚

. Thus 1 < 𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1 ≤ 𝜋𝜋 + 𝑛𝑛

𝑚𝑚
 

and 0 < 𝜋𝜋 − 𝑛𝑛
𝑚𝑚
− 𝜃𝜃2 ≤ 𝜋𝜋 − 𝑛𝑛

𝑚𝑚
, and Equation (4.2) can be written as 

𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 1� = 𝐺𝐺𝑗𝑗−1 �𝑖𝑖 + (𝑗𝑗 − 1) 𝑛𝑛
𝑚𝑚

+ 1� + (𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇 =  𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛

𝑚𝑚
� + (𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2)𝜋𝜋𝑇𝑇 + 𝜅𝜅𝐿𝐿. (4.15) 

Hence 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝑛𝑛 + 𝜋𝜋) = 𝐺𝐺0(𝑖𝑖 + 𝜋𝜋) + 𝑚𝑚(𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇, which leads to 𝐺𝐺𝑚𝑚(𝑖𝑖 +

𝜋𝜋) + 𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝐺𝐺𝑚𝑚(𝑖𝑖 + 𝜋𝜋) + 𝑚𝑚𝑘𝑘∗𝐿𝐿 + 𝑚𝑚(𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇, or equivalently 

𝑛𝑛𝑞𝑞∗𝑇𝑇 = 𝑚𝑚𝑘𝑘∗𝐿𝐿 + 𝑚𝑚(𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇.     (4.16) 

In addition, 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚

+ 1� = 𝐺𝐺𝑗𝑗 �𝑖𝑖 + 𝑗𝑗 𝑛𝑛
𝑚𝑚

+ 1� + (𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇 =

 𝐺𝐺𝑗𝑗+1 �𝑖𝑖 + (𝑗𝑗 + 1) 𝑛𝑛
𝑚𝑚
� + (𝜋𝜋 + 𝑛𝑛

𝑚𝑚
− 1 − 𝜃𝜃1)𝜋𝜋𝑇𝑇 + (𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2)𝜋𝜋𝑇𝑇 + 𝜅𝜅𝐿𝐿, which leads to 𝑞𝑞∗𝑇𝑇 =

(2𝜋𝜋 − 1)𝜋𝜋𝑇𝑇, or equivalently 

𝑞𝑞∗ = (2𝜋𝜋 − 1)𝜋𝜋.    (4.17) 

From Equation (4.16) we further have 

𝑘𝑘∗ =
𝜃𝜃1+(1−𝜋𝜋)(1−2𝑛𝑛𝑚𝑚)

𝜃𝜃1+𝜃𝜃2
𝜅𝜅.      (4.18) 

Note that regions (2) and (4) are removed when 𝜋𝜋 − 𝑛𝑛
𝑚𝑚
≤ 0, and regions (3) and (4) are removed 

when 𝜋𝜋 − 1 + 𝑛𝑛
𝑚𝑚
≤ 0. In addition, in the four regions, the approximate macroscopic fundamental 

diagram can be written as 

𝑞𝑞0 = 𝑄𝑄(𝑘𝑘0; 𝐿𝐿,𝑇𝑇,𝜋𝜋,𝑚𝑚,𝑛𝑛) ≈ min �𝜕𝜕0
𝜕𝜕∗

, 𝜅𝜅−𝜕𝜕0
𝜅𝜅−𝜕𝜕∗

� 𝑞𝑞∗.     (4.19) 

  



 

Chapter 5 
Design of traffic signals 

From Equation (3.19), when 𝜃𝜃1 + Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 + Ψ�𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2� ≥ 2𝜋𝜋 , the 

network flow-rate 𝑞𝑞0 is approximately a trapezoidal function of the density 𝑘𝑘0 . According to 
Little’s law (Little, 1961), the average travel time of each vehicle equals 

𝜕𝜕0𝐿𝐿
𝜕𝜕0

≈ 𝜕𝜕0𝐿𝐿

min�𝑘𝑘0𝑘𝑘1
,1,𝜅𝜅−𝑘𝑘0𝜅𝜅−𝑘𝑘2

�𝜋𝜋𝐶𝐶
,       (5.1)  

which is a function of both density and signal settings. In the design of traffic signals, the 
objective is to minimize the average travel time at a given density, or equivalently to maximize 
the average flow-rate: 

argmin
𝑇𝑇,𝜋𝜋,𝑚𝑚,𝑛𝑛

𝜕𝜕0𝐿𝐿
𝜕𝜕0

= argmax
𝑇𝑇,𝜋𝜋,𝑚𝑚,𝑛𝑛

𝑞𝑞0 ≈ argmax
𝑇𝑇,𝜋𝜋,𝑚𝑚,𝑛𝑛

min �𝜕𝜕0
𝜕𝜕1

, 1, 𝜅𝜅−𝜕𝜕0
𝜅𝜅−𝜕𝜕2

� 𝜋𝜋𝜋𝜋.   (5.2) 

5.1 Design of green ratio 
 From Equation (5.2), we can see that the larger green ratio, 𝜋𝜋, the better. However, the 
green ratio of one movement conflicts with that of its competing movement. In general, 𝜋𝜋 has to 
be determined by considering the demands of different movements. This is beyond the topic of 
this research. Here we assume that 𝜋𝜋 ∈ (0,1) is given and attempt to find optimal cycle length 
and offset.  

5.2 Design of cycle length 
 Here we solve the optimal cycle length for the special case with (𝑚𝑚,𝑛𝑛) = (1,0). In this 
case, the optimization problem (5.2) becomes 

max
𝜃𝜃1,𝜃𝜃2

min � 𝜃𝜃1
𝜋𝜋−Ψ(𝜋𝜋−𝜃𝜃1)

𝜕𝜕0
𝜅𝜅𝑐𝑐

 , 1, 𝜃𝜃2
𝜋𝜋−Ψ(𝜋𝜋−𝜃𝜃2)

(𝜅𝜅−𝜕𝜕0)𝑤𝑤
𝐶𝐶

�𝜋𝜋𝜋𝜋.    (5.3) 

Thus we have the following results: 

1. For very sparse traffic when 𝑘𝑘0 ≤ 𝜋𝜋𝜅𝜅𝑐𝑐, the optimal 𝜃𝜃1∗ satisfies 𝜋𝜋𝜃𝜃1∗ + Ψ(𝜋𝜋 − 𝜃𝜃1∗) = 𝜋𝜋; 
i.e., 𝜙𝜙(𝜃𝜃1∗) = 0. Correspondingly the optimal cycle length is 𝑇𝑇∗ = 1

Φ(𝜃𝜃1∗)
𝐿𝐿
𝑢𝑢

.  



2. For sparse traffic when 𝜋𝜋𝜅𝜅𝑐𝑐 < 𝑘𝑘0 < 𝜅𝜅𝑐𝑐 , the optimal 𝜃𝜃1∗  satisfies 𝑘𝑘1 ≤ 𝑘𝑘0 ; i.e., 𝜋𝜋 −
Ψ(𝜋𝜋 − 𝜃𝜃1∗) ≤ 𝜕𝜕0

𝜅𝜅𝑐𝑐
 𝜃𝜃1∗, which has multiple solutions. In particular, 𝜙𝜙(𝜃𝜃1∗) = 0 is an optimal 

solution. 
3. For critical traffic when 𝑘𝑘0 = 𝜅𝜅𝑐𝑐 , the optimal 𝜃𝜃1∗  and 𝜃𝜃2∗  satisfies 𝜃𝜃1∗ + Ψ(𝜋𝜋 − 𝜃𝜃1∗) ≥ 𝜋𝜋 

and 𝜃𝜃2∗ + Ψ(𝜋𝜋 − 𝜃𝜃2∗) ≥ 𝜋𝜋, which are true for any 𝜃𝜃1∗ and 𝜃𝜃2∗. Therefore, any 𝑇𝑇 will lead to 
the optimal solution. 

4. For dense traffic when 𝜅𝜅𝑐𝑐 < 𝑘𝑘0 < 𝜅𝜅 − 𝜋𝜋 𝐶𝐶
𝑤𝑤

, the optimal 𝜃𝜃2∗  satisfies 𝑘𝑘2 ≥ 𝑘𝑘0 ; i.e., 𝜋𝜋 −

Ψ(𝜋𝜋 − 𝜃𝜃2∗) ≤ (𝜅𝜅−𝜕𝜕0)𝑤𝑤
𝐶𝐶

 𝜃𝜃2∗, which has multiple solutions. In particular, 𝜙𝜙(𝜃𝜃2∗) is an optimal 
solution. 

5. For very dense traffic when 𝑘𝑘0 ≥ 𝜅𝜅 − 𝜋𝜋 𝐶𝐶
𝑤𝑤

, the optimal 𝜃𝜃2∗ satisfies 𝜋𝜋𝜃𝜃2∗ + Ψ(𝜋𝜋 − 𝜃𝜃2∗) =

𝜋𝜋; i.e., 𝜙𝜙(𝜃𝜃2∗) = 0. Correspondingly the optimal cycle length is 𝑇𝑇∗ = 1
Φ(𝜃𝜃2∗)

𝐿𝐿
𝑤𝑤

. 

However, in reality due to limited reaction times and bounded acceleration rates of drivers 
and vehicles, there exists a start-up lost time, 𝛿𝛿. The total effective green time for a cycle with 
two phases is only (𝑇𝑇 − 2𝛿𝛿). We assume that the effective green ratio is 𝜋𝜋0, which allocates the 
total effective green time to the studied road. Then the effective green time is 𝜋𝜋 𝑇𝑇 = (𝑇𝑇 − 2𝛿𝛿)𝜋𝜋0. 
Therefore we have the following effective green ratio 

𝜋𝜋 = �1 − 2𝛿𝛿
𝑇𝑇
� 𝜋𝜋0,      (5.4) 

and (5.3) can be written as 

 max
𝜃𝜃1,𝜃𝜃2

min � 𝜃𝜃1
𝜋𝜋−Ψ(𝜋𝜋−𝜃𝜃1)

𝜕𝜕0
𝜅𝜅𝑐𝑐

 , 1, 𝜃𝜃2
𝜋𝜋−Ψ(𝜋𝜋−𝜃𝜃2)

(𝜅𝜅−𝜕𝜕0)𝑤𝑤
𝐶𝐶

� �1 − 2𝛿𝛿
𝑇𝑇
�𝜋𝜋0𝜋𝜋.    (5.5) 

Thus we can see that when 𝑇𝑇 is very small for a stop sign, the network flow-rate becomes very 
low, and we should avoid very small cycle length. 

 When 𝛿𝛿 ≪ 1, 𝜋𝜋 ≈ 𝜋𝜋0, and (5.5) can be approximated by  

max
𝜃𝜃1,𝜃𝜃2

min � 𝜃𝜃1
𝜋𝜋0−Ψ(𝜋𝜋0−𝜃𝜃1)

𝜕𝜕0
𝜅𝜅𝑐𝑐

 , �1 − 2𝛿𝛿
𝑇𝑇
� , 𝜃𝜃2

𝜋𝜋0−Ψ(𝜋𝜋0−𝜃𝜃2)
(𝜅𝜅−𝜕𝜕0)𝑤𝑤

𝐶𝐶
�𝜋𝜋0𝜋𝜋.    (5.5) 

Then we have the following theorem. 

Theorem 5.1 The optimal cycle length considering the start-up lost time is given in the 
following: 

1. For very sparse traffic, 𝑇𝑇 = 𝐿𝐿
𝑢𝑢𝜃𝜃1

, and the maximum flow-rate is 𝑞𝑞∗ ≈ 𝑢𝑢 𝑘𝑘0 ≤

�1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋, for which there exist multiple optimal cycle lengths: 𝑇𝑇∗ = 1

Φ(𝜃𝜃1∗)
𝐿𝐿
𝑢𝑢
 with 

𝜙𝜙(𝜃𝜃1∗) = 0. 



2. For sparse traffic, 𝑇𝑇 = 𝐿𝐿
𝑢𝑢𝜃𝜃1

, and the optimal 𝜃𝜃1∗ is determined by 𝜃𝜃1∗

𝜋𝜋0−Ψ(𝜋𝜋0−𝜃𝜃1∗)
𝜕𝜕0
𝜅𝜅𝑐𝑐

=  1 −
2𝛿𝛿𝑢𝑢
𝐿𝐿
𝜃𝜃1∗, which leads to 𝑇𝑇∗ = 𝜕𝜕0𝐿𝐿

𝜋𝜋0𝐶𝐶
+ 2𝛿𝛿. 

3. For critical traffic, the maximum flow-rate 𝑞𝑞∗ = max �1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋 . Thus 𝑇𝑇∗ = ∞. 

4. For dense traffic, 𝑇𝑇 = 𝐿𝐿
𝑤𝑤𝜃𝜃2

, and the optimal 𝜃𝜃2∗ is determined by 𝜃𝜃2∗

𝜋𝜋0−Ψ(𝜋𝜋0−𝜃𝜃2∗)
(𝜅𝜅−𝜕𝜕0)𝑤𝑤

𝐶𝐶
=

 1 − 2𝛿𝛿𝑤𝑤
𝐿𝐿
𝜃𝜃2∗, which leads to 𝑇𝑇∗ = (𝜅𝜅−𝜕𝜕0)𝐿𝐿

𝜋𝜋0𝐶𝐶
+ 2𝛿𝛿. 

5. For very dense traffic, the maximum flow-rate is 𝑞𝑞∗ ≈ 𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) ≤ �1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋, for 

which there exist multiple optimal cycle lengths: 𝑇𝑇∗ = 1
Φ(𝜃𝜃2∗)

𝐿𝐿
𝑤𝑤

 with 𝜙𝜙(𝜃𝜃2∗) = 0. 

If we denote the congestion level by 

Χ = min{𝑢𝑢𝜕𝜕0,𝐶𝐶}
min{𝐶𝐶,(𝜅𝜅−𝜕𝜕0)𝑤𝑤},     (5.6) 

which is the ratio of stationary demand over supply, then we have the following corollary 
from Theorem 5.1. 

Corollary 5.2 The optimal cycle length at different congestion level considering the start-up lost 
time is given in the following: 

1. For very sparse traffic with Χ ∈ [0,𝜋𝜋0), 𝑇𝑇 = 𝐿𝐿
𝑢𝑢𝜃𝜃1

, and the maximum flow-rate is 𝑞𝑞∗ ≈

𝑢𝑢 𝑘𝑘0 ≤ �1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋, for which there exist multiple optimal cycle lengths: 𝑇𝑇∗ = 1

Φ(𝜃𝜃1∗)
𝐿𝐿
𝑢𝑢
 

with 𝜙𝜙(𝜃𝜃1∗) = 0. 
2. For sparse traffic with Χ ∈ [𝜋𝜋0, 1), 𝑇𝑇 = 𝐿𝐿

𝑢𝑢𝜃𝜃1
, and the optimal 𝜃𝜃1∗ is determined by 

𝜃𝜃1∗

𝜋𝜋0−Ψ(𝜋𝜋0−𝜃𝜃1∗)
𝜕𝜕0
𝜅𝜅𝑐𝑐

=  1 − 2𝛿𝛿𝑢𝑢
𝐿𝐿
𝜃𝜃1∗, which leads to 𝑇𝑇∗ = Χ𝐿𝐿

𝜋𝜋0𝑢𝑢
+ 2𝛿𝛿. 

3. For critical traffic with Χ = 1, the maximum flow-rate 𝑞𝑞∗ = 𝑚𝑚𝑎𝑎𝑥𝑥 �1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋. Thus 

𝑇𝑇∗ = ∞. 
4. For dense traffic with Χ ∈ (1, 1

𝜋𝜋0
], 𝑇𝑇 = 𝐿𝐿

𝑤𝑤𝜃𝜃2
, and the optimal 𝜃𝜃2∗ is determined by 

𝜃𝜃2∗

𝜋𝜋0−Ψ(𝜋𝜋0−𝜃𝜃2∗)
(𝜅𝜅−𝜕𝜕0)𝑤𝑤

𝐶𝐶
=  1 − 2𝛿𝛿𝑤𝑤

𝐿𝐿
𝜃𝜃2∗, which leads to 𝑇𝑇∗ = Χ𝐿𝐿

𝜋𝜋0𝑤𝑤
+ 2𝛿𝛿. 

5. For very dense traffic with Χ ∈ ( 1
𝜋𝜋0

,∞), the maximum flow-rate is 𝑞𝑞∗ ≈ 𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) ≤

�1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋, for which there exist multiple optimal cycle lengths: 𝑇𝑇∗ = 1

Φ(𝜃𝜃2∗)
𝐿𝐿
𝑤𝑤

 with 
𝜙𝜙(𝜃𝜃2∗) = 0. 

When Χ < 1, traditionally Webster's formula has been used to find the optimal cycle length: 
even though the above formula is substantially different from Webster's optimal cycle length 
formula, it is consistent in principle with the latter, as it increases in both the congestion level 
and the lost time. But here we also obtain a simple formula for dense and very dense traffic with 



queue spillback when Χ > 1, and the optimal cycle length still increases in the lost time but 
decreases in the congestion level.  

5.3 Design of offset 

Here we assume that 𝜃𝜃1 + Ψ�𝜋𝜋 + 𝑛𝑛
𝑚𝑚
− 𝜃𝜃1� + 𝜃𝜃2 + Ψ�𝜋𝜋 − 𝑛𝑛

𝑚𝑚
− 𝜃𝜃2� ≥ 2𝜋𝜋. With offset, 

Equation (5.5) can be written as 

max
𝜃𝜃1,𝜃𝜃2

min � 𝜃𝜃1
�1+𝑛𝑛

𝑚𝑚�𝜋𝜋0−Ψ�𝜋𝜋0+
𝑛𝑛
𝑚𝑚−𝜃𝜃1�

𝜕𝜕0
𝜅𝜅𝑐𝑐

 , �1 − 2𝛿𝛿
𝑇𝑇
� , 𝜃𝜃2

�1−𝑛𝑛
𝑚𝑚�𝜋𝜋0−Ψ�𝜋𝜋0−

𝑛𝑛
𝑚𝑚−𝜃𝜃2�

(𝜅𝜅−𝜕𝜕0)𝑤𝑤
𝐶𝐶

�𝜋𝜋0𝜋𝜋.   (5.7) 

Theorem 5.3 The optimal cycle length, 𝑇𝑇∗, and offset, 𝑛𝑛
∗

𝑚𝑚∗, considering the start-up lost time are 
given in the following: 

1. For very sparse traffic, 𝑇𝑇 = 𝐿𝐿
𝑢𝑢𝜃𝜃1

, and the maximum flow-rate is 𝑞𝑞∗ ≈ 𝑢𝑢 𝑘𝑘0 ≤

�1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋, for which there exist multiple optimal cycle lengths and offsets: 𝑇𝑇∗ =

1

Φ(𝜃𝜃1∗)+𝑛𝑛∗
𝑚𝑚∗

𝐿𝐿
𝑢𝑢
 with 𝜙𝜙(𝜃𝜃1∗) = 𝑛𝑛∗

𝑚𝑚∗. 

2. For sparse traffic, 𝑇𝑇 = 𝐿𝐿
𝑢𝑢𝜃𝜃1

, and the optimal 𝜃𝜃1∗ and offset 𝑛𝑛
∗

𝑚𝑚∗ are determined by 
𝜃𝜃1∗

�1+𝑛𝑛∗
𝑚𝑚∗�𝜋𝜋0−Ψ�𝜋𝜋0+

𝑛𝑛∗
𝑚𝑚∗−𝜃𝜃1∗�

𝜕𝜕0
𝜅𝜅𝑐𝑐

=  1 − 2𝛿𝛿𝑢𝑢
𝐿𝐿
𝜃𝜃1∗, which leads to 𝑇𝑇∗ = 𝜕𝜕0𝐿𝐿

�1+𝑛𝑛∗
𝑚𝑚∗�𝜋𝜋0𝐶𝐶

+ 2𝛿𝛿. 

3. For critical traffic, the maximum flow-rate 𝑞𝑞∗ = max �1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋 . Thus 𝑇𝑇∗ = ∞. 

4. For dense traffic, 𝑇𝑇 = 𝐿𝐿
𝑤𝑤𝜃𝜃2

, and the optimal 𝜃𝜃2∗ and offset 𝑛𝑛
∗

𝑚𝑚∗ are determined by 
𝜃𝜃2∗

�1−𝑛𝑛∗
𝑚𝑚∗�𝜋𝜋0−Ψ�𝜋𝜋0−

𝑛𝑛∗
𝑚𝑚∗−𝜃𝜃2∗�

(𝜅𝜅−𝜕𝜕0)𝑤𝑤
𝐶𝐶

=  1 − 2𝛿𝛿𝑤𝑤
𝐿𝐿
𝜃𝜃2∗, which leads to 𝑇𝑇∗ = (𝜅𝜅−𝜕𝜕0)𝐿𝐿

�1−𝑛𝑛∗
𝑚𝑚∗�𝜋𝜋0𝐶𝐶

+ 2𝛿𝛿. 

5. For very dense traffic, the maximum flow-rate is 𝑞𝑞∗ ≈ 𝑤𝑤(𝜅𝜅 − 𝑘𝑘0) ≤ �1 − 2𝛿𝛿
𝑇𝑇∗
� 𝜋𝜋0𝜋𝜋, for 

which there exist multiple optimal cycle lengths and offsets: 𝑇𝑇∗ = 1

Φ(𝜃𝜃2∗)+1−𝑛𝑛∗
𝑚𝑚∗

𝐿𝐿
𝑤𝑤

 with 

𝜙𝜙(𝜃𝜃2∗) = 1 − 𝑛𝑛∗

𝑚𝑚∗. 

For a homogeneous road, there is a certain level of equivalence between the cycle length and 
the offset: given an offset, we can find the optimal cycle length; and given a cycle length in a 
range, we can find the optimal cycle length. However, for an inhomogeneous road, one can 
choose different offsets for different signals, so that all signals can have the same cycle length. 

 

  



 

Chapter 6 
Conclusions and Future Research 

In this report, we applied the link transmission model to formulate and analyze traffic 
dynamics in a signalized arterial network. In particular we (1) analytically derived macroscopic 
fundamental diagrams for stationary traffic patterns with different network topologies, road 
conditions, driving behaviors, and signal settings; (2) quantified congestion mitigation effects of 
different signal settings, including cycle lengths, green splits,  and offsets; (3) formulated an 
optimization problem with the network flow-rate as performance measure to find optimal signal 
control parameters under certain demand levels, and (4) developed a set of simple decision-
support tools for arterial network improvement. 

For the homogeneous network without turning movements, this research successfully fills 
the gap between methods based on delay formulas and those based on traffic simulation by 
presenting a new method that is both physically realistic and mathematically tractable. There are 
three particular contributions in this study. First, we obtained a simple link transmission model 
for the boundary flows on a signalized ring road, which forms the foundation for solving and 
analyzing stationary states. Second, we derived an explicit approximate macroscopic 
fundamental diagram, in which the average flow-rate is a function of both traffic density and 
signal settings. Third, we presented formulas for optimal cycle lengths under five levels of 
congestion with a start-up lost time. 

In the future, we will be interested in applying the method to study an inhomogenoeus 
road network, in which different roads have different lengths, speed limits, and offsets. We will 
also be interested in studying the congestion mitigation effect of speed limits and road lengths. In 
addition, we will also examine the impacts of different start-up lost time caused by different 
queues. 
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